, Volume 46, Issue 3, pp 441–451 | Cite as

Conventional and combinatorial chlorophyll fluorescence imaging of tobamovirus-infected plants

  • M. Pineda
  • J. Soukupová
  • K. Matouš
  • L. Nedbal
  • M. BarónEmail author
Original Papers


We compared by chlorophyll (Chl) fluorescence imaging the effects of two strains of the same virus (Italian and Spanish strains of the Pepper mild mottle virus — PMMoV-I and-S, respectively) in the host plant Nicotiana benthamiana. The infection was visualized either using conventional Chl fluorescence parameters or by an advanced statistical approach, yielding a combinatorial set of images that enhances the contrast between control and PMMoV-infected plants in the early infection steps. Among the conventional Chl fluorescence parameters, the non-photochemical quenching parameter NPQ was found to be an effective PMMoV infection reporter in asymptomatic leaves of N. benthamiana, detecting an intermediate infection phase. The combinatorial imaging revealed the infection earlier than any of the standard Chl fluorescence parameters, detecting the PMMoV-S infection as soon as 4 d post-inoculation (dpi), and PMMoV-I infection at 6 dpi; the delay correlates with the lower virulence of the last viral strain.

Additional key words

biotic stress Nicotiana benthamiana non-photochemical quenching Pepper mild mottle virus 





charge-coupled device




chlorophyll fluorescence


chlorophyll fluorescence imaging


days post-inoculation


minimum chlorophyll fluorescence in the dark adapted state


maximum chlorophyll fluorescence in the dark adapted state


maximum chlorophyll fluorescence in the light adapted state


maximum chlorophyll fluorescence after switching off the “actinic light” (protocol 2)


maximum chlorophyll fluorescence reached at the induction curve without saturating flashes


chlorophyll fluorescence value prior to the saturating pulse in the light-adapted state


variable fluorescence


high irradiance


Linear Discriminant Analysis


light-emitting diode


low irradiance


photosynthetically active radiation


non-photochemical quenching


non-photochemical quenching at referred kinetics times, t


net photosynthetic rate

PMMoV-I and-S

Italian and Spanish strains of the Pepper mild mottle virus




image resulting from the combinatorial imaging






Sequential Forward Floating Search


photosystem 2 quantum yield


photosystem 2 quantum yield at referred kinetics times, t [s]


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldea, M., Hamilton, J.G., Resti, J.P., Zangerl, A.R., Berenbaum, M.R., Frank, T.D., de Lucia, E.H.: Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings.-Oecologia 149: 221–232, 2006.PubMedCrossRefGoogle Scholar
  2. Allen, J.F., Mullineux, C.W.: Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy, kinetics and imaging.-In: Papageorgiou, C.G., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 447–461. Springer, Dordrecht 2004.Google Scholar
  3. Alonso, E., García-Luque, I., Avila-Rincón, M.J., Wicke, B., Serra, M.T., Díaz-Ruiz, J.R.: A tobamovirus causing heavy losses in protected pepper crops in Spain.-J. Phytopathology 125: 67–76, 1989.CrossRefGoogle Scholar
  4. Balachandran, S., Hurry, V.M., Kelley, S.E., Osmond, C.B., Robinson, S.A., Rohozinski, J., Seaton, G.G.R., Sims, D.A.: Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis.-Physiol. Plant. 100: 203–213, 1997.CrossRefGoogle Scholar
  5. Balachandran, S., Osmond, B.C.: Susceptibility of tobacco leaves to photoinhibition following infection with two strains of tobacco mosaic virus under different light and nitrogen nutrition regimes.-Plant Physiol. 104: 1051–1057, 1994.PubMedGoogle Scholar
  6. Balachandran, S., Osmond, B.C., Daley, F.P.: Diagnosis of the earliest strain-specific interactions between tobacco mosaic virus and chloroplasts of tobacco leaves in vivo by means of chlorophyll fluorescence imaging.-Plant Physiol. 104: 1059–1065, 1994.PubMedGoogle Scholar
  7. Barón, M., Rahoutei, J., Lázaro, J.J., García-Luque, I.: PSII response to biotic and abiotic stress.-In: Mathis, P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 4. Pp. 897–900. Kluwer Academic Publ., Dordrecht-Boston-London 1995.Google Scholar
  8. Berger, S., Benediktyová, Z., Matouš, K., Bonfig, K., Mueller, M.J., Nedbal, L., Roitsch, T.: Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: Differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana.-J. exp. Bot. 58: 797–806, 2007.PubMedCrossRefGoogle Scholar
  9. Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., Roitsch, T.: Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato.-Physiol. Plant. 122: 419–428, 2004.CrossRefGoogle Scholar
  10. Bilger, W., Björkman, O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.-Photosynth. Res. 25: 173–185, 1990.CrossRefGoogle Scholar
  11. Bonfig, K.B., Schreiber, U., Gabler, A., Roitsch, T., Berger, S.: Infection with virulent and avirulent P. syringae strains differentially effects photosynthesis and sink metabolism in Arabidopsis leaves.-Planta 225: 1–12, 2006.PubMedCrossRefGoogle Scholar
  12. Chaerle, L., Hagenbeek, D., De Bruyne, E., Valcke, R., Van Der Straeten, D.: Thermal and chlorophyll-fluorescence imaging distinguish plant pathogen interaction at an early stage.-Plant Cell Physiol. 45: 887–896, 2004.PubMedCrossRefGoogle Scholar
  13. Chaerle, L., Pineda, M., Romero-Aranda, R., Van Der Straeten, D., Barón, M.: Robotized thermal and chlorophyll-fluorescence imaging of Pepper mild mottle virus infection in Nicotiana benthamiana.-Plant Cell Physiol. 47: 1323–1336, 2006.PubMedCrossRefGoogle Scholar
  14. Chou, H.M., Bundock, N., Rolfe, A.S., Scholes, D.J.: Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism.-Mol. Plant Pathol. 2: 99–113, 2000.CrossRefGoogle Scholar
  15. Critchley, C., Russell, A.W.: Photoinhibition of photosynthesis in vivo: The role of protein turnover in photosystem II.-Physiol. Plant. 92: 188–196, 1994.CrossRefGoogle Scholar
  16. Fukunaga, K.: Introduction to Statistical Pattern Recognition. 2nd Ed.-Academic Press, New York 1990.Google Scholar
  17. García-Luque, I., Ferrero, M.L., Rodríguez, J.M., Alonso, E., de la Cruz, A., Sanz, A.I., Vaquero, C., Serra, M.T., Díaz-Ruíz, J.R.: The nucleotide sequence of the coat protein genes and 3’ non-coding regions of two resistance-breaking tobamoviruses in pepper shows that they are different viruses.-Arch. Virol. 131: 75–88, 1993.PubMedCrossRefGoogle Scholar
  18. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87–92, 1989.Google Scholar
  19. Horton, P., Wentworth, M., Ruban, A.: Control of the light harvesting function of chloroplast membranes: The LHCII-aggregation model for non-photochemical quenching.-FEBS Lett. 579: 4201–4206, 2005.PubMedCrossRefGoogle Scholar
  20. Ireland, C.R., Long, S.P., Baker, N.R.: The relationship between carbon dioxide fixation and chlorophyll fluorescence during induction of photosynthesis in maize leaves at different temperatures and carbon dioxide concentrations.-Planta 160: 550–558, 1984.CrossRefGoogle Scholar
  21. Kautsky, H., Hirsch, A.: Neue Versuche zur Kohlensäureassimilation.-Naturwissenschaften 48: 964–964, 1931.CrossRefGoogle Scholar
  22. Kitajima, H., Butler, W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.-Biochim. biophys. Acta 376: 105–115, 1975.PubMedCrossRefGoogle Scholar
  23. Lamb, E.M., Adkins, S.E., Shuler, K.D., Roberts, P.D.: Pepper mild mottle virus.-Gainesville FL: EDIS, HS-808, 2001.Google Scholar
  24. Lichtenthaler, H.K., Babani, F.: Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity.-In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 713–736. Springer, Dordrecht 2004.Google Scholar
  25. Lichtenthaler, H.K., Miehé, J.A.: Fluorescence imaging as a diagnostic tool for plant stress.-Trends Plant Sci. 2: 316–320, 1997.CrossRefGoogle Scholar
  26. Lichtenthaler, H.K., Rinderle, U.: The role of chlorophyll fluorescence in the detection of stress conditions in plants.-CRC crit. Rev. anal. Chem. 19: S29–S85, 1988.Google Scholar
  27. Lohaus, G., Heldt, H.W., Osmond, C.B.: Infection with phloem limited Abutilon mosaic virus causes localized carbohydrate accumulation in leaves of Abutilon striatum: relationships to symptom development and effects on chlorophyll fluorescence quenching during photosynthetic induction.-Plant Biol. 2: 161–167, 2000.CrossRefGoogle Scholar
  28. Matouš, K., Benediktyová, Z., Berger, S., Roitsch, T., Nedbal, L.: Case study of combinatorial imaging: What protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae?-Photosynth. Res. 90: 243–253, 2006.PubMedCrossRefGoogle Scholar
  29. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide.-J. exp. Bot. 51: 659–668, 2000.PubMedCrossRefGoogle Scholar
  30. Nedbal, L., Březina, V.: Complex metabolic oscillations in plants forced by harmonic irradiance.-Biophys. J. 83: 2180–2189, 2002.PubMedGoogle Scholar
  31. Nedbal, L., Březina, V., Adamec, F., Štys, D., Oja, V., Laisk, A., Govindjee: Negative feedback regulation is responsible for the non-linear modulation of photosynthetic activity in plants and cyanobacteria exposed to a dynamic light environment.-Biochim. biophys. Acta 1607: 5–17, 2003.PubMedCrossRefGoogle Scholar
  32. Nedbal, L., Soukupová, J., Kaftan, D., Whitmarsh, J., Trtílek, M.: Kinetic imaging of chlorophyll fluorescence using modulated light.-Photosynth. Res. 66: 3–12, 2000.PubMedCrossRefGoogle Scholar
  33. Nedbal, L., Whitmarsh, J.: Chlorophyll fluorescence imaging of leaves and fruits.-In: Papageorgiou, C.G., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 389–407. Springer, Dordrecht 2004.Google Scholar
  34. Osmond, C.B., Daley, P.F., Badger, M.R., Lüttge, U.: Chlorophyll fluorescence quenching during photosynthetic induction in leaves of Abutilon striatum Dicks infected with Abutilon mosaic virus observed with a field-portable imaging system.-Bot. Acta 111: 390–397, 1998.Google Scholar
  35. Pérez-Bueno, M.L., Ciscato, M., vandeVen, M., García-Luque, I., Valcke, R., Barón, M.: Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus.-Photosynth. Res. 90: 111–123, 2006.PubMedCrossRefGoogle Scholar
  36. Pérez-Bueno, M.L., Rahoutei, J., Sajnani, C., García-Luque, I., Barón, M.: Proteomic analysis of the oxygen-evolving complex of photosystem II under biotic stress. Studies on Nicotiana benthamiana infected with tobamoviruses.-Proteomics 4: 418–425, 2004.PubMedCrossRefGoogle Scholar
  37. Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection.-Pattern Recognition Lett. 15: 1119–1125, 1994.CrossRefGoogle Scholar
  38. Rahoutei, J., Barón, M., García-Luque, I., Droppa, M., Neményi, A., Horvath, G.: Effect of tobamovirus infection on the thermoluminiscence characteristics of chloroplast from infected plants.-Z. Naturforsch. 54c: 634–639, 1999.Google Scholar
  39. Rahoutei, J., García-Luque, I., Barón, M.: Inhibition of photosynthesis by viral infection: Effect on PSII structure and function.-Physiol. Plant. 110: 286–292, 2000.CrossRefGoogle Scholar
  40. Rahoutei, J., García-Luque, I., Cremona, V., Barón, M.: Effect of tobamovirus infection on PSII complex of infected plants.-In: Garab, G. (ed.): Photosynthesis: From Light to Biosphere. Vol. IV. Pp. 2761–2764. Kluwer Academic Publ., Dordrecht-Boston-London 1998.Google Scholar
  41. Roháček, K., Barták, M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications.-Photosynthetica 37: 339–363, 1999.CrossRefGoogle Scholar
  42. Ruban, A.V., Horton, P.: Regulation of non-photochemical quenching of chlorophyll fluorescence in plants.-Aust. J. Plant Physiol. 22: 221–230, 1995.CrossRefGoogle Scholar
  43. Sajnani, C., Zurita, J.L., Doncel, M., Ortega, J.M., Barón, M., Ducruet, J.-M.: Changes in photosynthetic metabolism induced by tobamovirus infection in Nicotiana benthamiana studied in vivo by chlorophyll thermoluminescence.-New Phytol. 175: 120–130, 2007.PubMedCrossRefGoogle Scholar
  44. Scholes, J.D., Rolfe, S.A.: Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence.-Planta 199: 573–582, 1996.CrossRefGoogle Scholar
  45. Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.-Photosynth. Res. 10: 51–62, 1986.CrossRefGoogle Scholar
  46. Soukupová, J., Smatanová, S., Nedbal, L., Jegorov, A.: Plant response to destruxins visualized by imaging of chlorophyll fluorescence.-Physiol. Plant. 118: 399–405, 2003.CrossRefGoogle Scholar
  47. Swarbrick, P.J., Schulze-Lefert, P., Scholes, J.D.: Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew.-Plant Cell Environ. 29: 1061–1076, 2006.PubMedCrossRefGoogle Scholar
  48. Tang, J.Y., Zielinski, R.E., Zangerl, A.R., Crofts, A.R., Berenbaum, M.R., de Lucia, E.H.: The differential effects of herbivory by first and fourth instars of Trichoplusia ni (Lepidoptera: Noctuidae) on photosynthesis in Arabidopsis thaliana.-J. exp. Bot. 57: 527–536, 2006.PubMedCrossRefGoogle Scholar
  49. van Wijk, K.J., Schnettger, B., Graf, H., Krause, G.H.: Photoinhibition and recovery in relation to heterogeneity of photosystem II.-Biochim. biophys. Acta 1142: 59–68, 1993.CrossRefGoogle Scholar
  50. Wetter, C., Conti, M., Alschuh, D., Tabillion, R., van Regemortel, M.H.V.: Pepper mild mottle virus, a tobamovirus infecting pepper cultivars in Sicily.-Phytopathology 74: 405–410, 1984.CrossRefGoogle Scholar
  51. Zangerl, A.R, Hamilton, J.G., Miller, T.J., Crofts, A.R., Oxborough, K., Berenbaum, M.R., de Lucia, E.H.: Impact of folivory on photosynthesis is greater than the sum of its holes.-Proc. nat. Acad. Sci. USA 22: 1088–1091, 2002.CrossRefGoogle Scholar
  52. Zhou, Y.H., Peng, Y.H., Lei, J.L., Zou, L.Y., Zheng, J.H., Yu, J.Q.: Effects of potato virus YNTN infection on gas exchange and photosystem 2 function in leaves of Solanum tuberosum L.-Photosynthetica 42: 417–423, 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Pineda
    • 1
  • J. Soukupová
    • 2
    • 3
  • K. Matouš
    • 2
    • 3
  • L. Nedbal
    • 2
    • 3
  • M. Barón
    • 1
    Email author
  1. 1.Department of Biochemistry, Molecular and Cell Biology of PlantsEstación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC)GranadaSpain
  2. 2.Institute of Systems Biology and EcologyAcademy of Sciences of the Czech RepublicNové HradyCzech Republic
  3. 3.Institute of Physical BiologyUniversity of South BohemiaNové HradyCzech Republic

Personalised recommendations