Skip to main content
Log in

Role of fructose-1,6-bisphosphatase, fructose phosphotransferase, and phosphofructokinase in saccharide metabolism of four C3 grassland species under elevated CO2

  • Original Papers
  • Published:
Photosynthetica

Abstract

We studied the effects of 15-months of elevated (700 µmol mol−1) CO2 concentration (EC) on the CO2 assimilation rate, saccharide content, and the activity of key enzymes in the regulation of saccharide metabolism (glycolysis and gluconeogenesis) of four C3 perennial temperate grassland species, the dicots Filipendula vulgaris and Salvia nemorosa and the monocots Festuca rupicola and Dactylis glomerata. The acclimation of photosynthesis to EC was downward in F. rupicola and D. glomerata whereas it was upward in F. vulgaris and S. nemorosa. At EC, F. rupicola and F. vulgaris leaves accumulated starch while soluble sugar contents were higher in F. vulgaris and D. glomerata. EC decreased pyrophosphate-D-fructose-6-phosphate l-phosphotransferase (PFP, EC 2.7.1.90) activity assayed with Fru-2,6-P2 in F. vulgaris and D. glomerata and increased it in F. rupicola and S. nemorosa. Growth in EC decreased phosphofructokinase (PFK, EC 2.7.1.11) activity in all four species, the decrease being smallest in S. nemorosa and greatest in F. rupicola. With Fru-2,6-P2 in the assay medium, EC increased the PFP/PFK ratio, except in F. vulgaris. Cytosolic fructose-1,6-bisphosphatase (Fru-1,6-P2ase, EC 3.1.3.11) was inhibited by EC, the effect being greatest in F. vulgaris and smallest in F. rupicola. Glucose-6-phosphate dehydrogenase (G6PDH EC 1.1.1.49) activity was decreased by growth EC in the four species. Activity ratios of Fru-1,6-P2ase to PFP and PFK suggest that EC may shift sugar metabolism towards glycolysis in the dicots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

ambient CO2 concentration

EC:

elevated CO2 concentration

Fru-6-P:

fructose-6-phosphate

Fru-1,6-P2 :

fructose-1,6-bisphosphate

Fru-1,6-P2ase:

fructose-1,6-bisphosphatase

Fru-2,6-P2 :

fructose-2,6-bisphosphate

G6PDH:

glucose-6-phosphate dehydrogenase

OPPP:

oxidative pentose phosphate pathway

P N :

net photosynthetic rate

PFP:

pyrophosphate-D-fructose-6-phosphate 1-phosphotransferase

PFK:

phosphofructokinase

PPFD:

photosynthetic photon flux density

PPi:

pyrophosphate

RuBPCO:

ribulose-1,5-bisphosphate carboxylase/oxygenase

References

  • Arp, W.J., Drake, B.G.: Increased photosynthetic capacity of Scirpus olneyi after 4 years of exposure to elevated CO2.-Plant Cell Environ. 14: 1003–1006, 1991.

    Article  CAS  Google Scholar 

  • Azcón-Bieto, J.: Inhibition of photosynthesis by carbohydrates in wheat leaves.-Plant Physiol. 73: 681–686, 1983.

    PubMed  Google Scholar 

  • Bassirirad, H., Tissue, D.T., Reynolds, J.F., Chapin, F.S.: Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures: Effects on growth, root respiration and PO4 3− uptake kinetics.-New Phytol. 133: 423–430, 1996.

    Article  CAS  Google Scholar 

  • Bowes, G., Vu, J.C.V., Hussain, M.W., Pennanen, A.H., Allen, L.H., Jr.: An overview of how rubisco and carbohydrate-metabolism may be regulated at elevated atmospheric [CO2] and temperature.-Agr. Food Sci. Finland 5: 261–270, 1996.

    Google Scholar 

  • Bradford, M.: A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding.-Anal. Biochem. 72: 248–256, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Caemmerer, S. von, Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.-Planta 153: 367–387, 1981.

    Article  Google Scholar 

  • Carnal, N.W., Black, C.C.: Phosphofructokinase activities in photosynthetic organisms. The occurrence of pyrophosphate-dependent 6-phosphofructokinase in plants and algae.-Plant Physiol. 71: 150–155, 1983.

    PubMed  CAS  Google Scholar 

  • Ceulemans, R., Mousseau, M.: Effects of elevated atmospheric CO2 on woody plants.-New Phytol. 127: 425–446, 1994.

    Article  Google Scholar 

  • Chen, Z.H., Walker, R.P., Acheson, R.M., Tecsi, L.I., Wingler, A., Lea, P.J., Leegood, R.C.: Are isocitrate lyase and phosphoenolpyruvate carboxykinase involved in gluconeogenesis during senescence of barley leaves and cucumber cotyledons?-Plant Cell Physiol. 41: 960–967, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, S.H., Moore, B.D., Seemann, J.R.: Effects of short-and long-term elevated CO2 on the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh.-Plant Physiol. 116: 715–723, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cséke, C., Balogh, A., Wong, J.H., Buchanan, B.B., Stitt, M., Herzog, B., Heldt, H.W.: Fructose 2,6-bisphosphate: a regulator of carbon processing in leaves.-Trends biochem. Sci. 12: 533–535, 1984.

    Article  Google Scholar 

  • Cséke, C., Weeden, N.F., Buchanan, B.B., Uyeda, K.: A special fructose bisphosphate functions as a cytoplasmic regulatory metabolite in green leaves.-Proc. nat. Acad. Sci. USA 79: 4322–4326, 1982.

    Article  PubMed  Google Scholar 

  • Dubois, M., Giles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugar and related substances.-Anal. Chem. 28: 350–356, 1956.

    Article  CAS  Google Scholar 

  • Geiger, M., Haake, V., Ludewig, F., Sonnewald, U., Stitt, M.: The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco.-Plant Cell Environ. 22: 1177–1199, 1999.

    Article  Google Scholar 

  • Gesch, R.W., Vu, J.C.V., Boote, K.J., Allen, L.H., Bowes, G.: Sucrose-phosphate synthase activity in mature rice leaves following changes in growth CO2 is unrelated to sucrose pool size.-New Phytol. 154: 77–84, 2002.

    Article  CAS  Google Scholar 

  • Hajirezaei, M., Sonnewald, U., Viola, R., Carlisle, S., Dennins, D.T., Stitt, M.: Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate 1-phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers.-Planta 192: 16–30, 1994.

    CAS  Google Scholar 

  • Hauschild, R., Schaewen, A. von: Differential regulation of glucose-6-phosphate dehydrogenase isoenzyme activities in potato.-Plant Physiol. 133: 47–62, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, M.W., Allen, L.H., Jr., Bowes, G.: Up-regulation of sucrose phosphate synthase in rice grown under elevated CO2 and temperature.-Photosynth. Res. 60: 199–208, 1999.

    Article  CAS  Google Scholar 

  • Jarvis, P.G.: Global change and plant water relations.-In: Borghetti, M., Grace, J., Raschi, A. (ed.): Water Transport in Plants Under Climatic Stress. Pp. 1–13. Cambridge University Press, Cambridge 1993.

    Google Scholar 

  • Körner, C., Miglietta, F.: Long term effects of naturally elevated CO2 on mediterranean grassland and forest trees.-Oecologia 99: 343–351, 1994.

    Article  Google Scholar 

  • Krapp, A., Hofmann, B., Schäfer, C., Stitt, M.: Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the “sink regulation” of photosynthesis?-Plant J. 3: 817–828, 1993.

    Article  CAS  Google Scholar 

  • Krapp, A., Stitt, M.: Influence of high carbohydrate content on the activity of plastidic and cytosolic isoenzyme pairs in photosynthetic tissues.-Plant Cell Environ. 17: 861–866, 1994.

    Article  CAS  Google Scholar 

  • Lea, P.J., Chen, Z.H., Leegood, R.C., Walker, R.P.: Does phosphoenolpyruvate carboxykinase have a role in both amino acid and carbohydrate metabolism?-Amino Acids 20: 225–241, 2001.

    Article  PubMed  CAS  Google Scholar 

  • McCready, R.M., Guggolz, J., Silviera, V., Owens, H.S.: Determination of starch and amylase in vegetables.-Anal. Chem. 22: 1156–1158, 1950.

    Article  CAS  Google Scholar 

  • Nádas, E., Balogh, Á., Kiss, F., Nagy, Z., Szente, K., Tuba, Z.: Some aspects of carbohydrate metabolism in two C3 grassland species under elevated CO2.-Abstr. bot. 21: 323–328, 1997.

    Google Scholar 

  • Nakano, H., Makino, A., Mae, T.: The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves.-Plant Physiol. 115: 191–198, 1997.

    PubMed  CAS  Google Scholar 

  • Newton, P.C.D.: Direct effects of increasing carbon dioxide on pasture plants and communities.-N. Zeal. J. agr. Res. 34: 1–24, 1991.

    CAS  Google Scholar 

  • Paul, M., Sonnewald, U., Hajirezaei, M., Dennis, D., Stitt, M.: Transgenic potato plants with strongly decreased expression of pyrophosphate: Fructose-6-phosphate 1-phosphotransferase do not differ significantly from wild type in photosynthate partitioning, plant growth of their ability to cope with limiting phosphate, limiting nitrogen and suboptimal temperatures.-Planta 196: 277–283, 1995.

    CAS  Google Scholar 

  • Peet, M.M., Huber, S.C., Patterson, D.T.: Acclimation to high CO2 in monoecious cucumbers. II. Carbon exchange rates, enzyme activities, and starch and nutrient concentrations.-Plant Physiol. 80: 63–67, 1986.

    PubMed  CAS  Google Scholar 

  • ap Rees, T.: Hexose phosphate metabolism by non-photosynthetic tissues of higher plants.-In: Preiss, J. (ed.): The Biochemistry of Plants. Pp. 1–33. Academic Press, New York 1988.

    Google Scholar 

  • Sage, R.F., Sharkey, T.D., Seemann, J.R.: Acclimation of photosynthesis to elevated CO2 in five C3 species.-Plant Physiol. 89: 590–596, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Seneweera, S.P., Basra, A.S., Barlow, E.W., Conroy, J.P.: Diurnal regulation of leaf blade elongation in rice by CO2. Is it related to sucrose-phosphate synthase activity?-Plant Physiol. 108: 1471–1477, 1995.

    PubMed  CAS  Google Scholar 

  • Spilatro, R.S., Anderson, J.M.: Carbohydrate metabolism and activity of pyrophosphate: Fructose-6-phosphate phosphotransferase in photosynthetic soybean (Glycine max Merr.) suspension cells.-Plant Physiol. 88: 862–868, 1988.

    PubMed  CAS  Google Scholar 

  • Stitt, M.: Fine control of sucrose synthesis by fructose-2,6-bisphosphate.-In: Heath, R.L., Preiss, J. (ed.): Regulation of Carbohydrate Partitioning in Photosynthetic Tissue. Pp. 109–126. American Society of Plabnt Physiologists, Rockville 1985.

    Google Scholar 

  • Stitt, M.: Fructose-2,6-bisphosphate as a regulatory molecule in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 153–185, 1990.

    Article  CAS  Google Scholar 

  • Stitt, M.: Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells.-Plant Cell Environ. 14: 741–762, 1991.

    Article  CAS  Google Scholar 

  • Stitt, M.: Enhanced CO2, photosynthesis and growth; what should we measure to gain a better understanding of the plant’s response?-In: Schulze, E.D., Mooney, H.A. (ed.): Design and Execution of Experiments on CO2 Enrichment. Pp. 3–28. ECSC-EEC-EAEC, Brussels-Luxembourg 1993.

    Google Scholar 

  • Stitt, M., Schaewen, A. von, Willmitzer, L.: “Sink” regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase of glycolytic-enzymes.-Planta 183: 40–50, 1991.

    CAS  Google Scholar 

  • Theodorou, M.E., Kruger, N.J.: Physiological relevance of fructose 2,6-bisphosphate in the regulation of spinach leaf pyrophosphate: fructose 6-phosphate 1-phosphotransferase.-Planta 213: 147–157, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Theodorou, M.E., Plaxton, W.C.: Induction of pyrophosphate-dependent phosphofructokinase by phosphate starvation in seedlings of Brassica nigra.-Plant Cell Environ. 17: 287–294, 1994.

    Article  CAS  Google Scholar 

  • Tuba, Z., Szente, K., Nagy, Z., Csintalan, Z., Koch, J.: Responses of CO2 assimilation, transpiration and water use efficiency to long-term elevated CO2 in perennial C3 xeric loess steppe species.-J. Plant Physiol. 148: 356–361, 1996.

    CAS  Google Scholar 

  • Uyeda, K.E., Furuya, C.R.: Fructose-2,6-bisphosphate.-Trends biochem. Sci. 7: 329–331, 1982.

    Article  Google Scholar 

  • van Oosten, J.-J., Afif, D., Dizengremel, P.: Long-term effects of a CO2 enriched atmosphere on enzymes of the primary carbon metabolism of spruce trees.-Plant Physiol. Biochem. 30: 541–547, 1992.

    Google Scholar 

  • Vu, J.C.V., Gesch, R.W., Pennanen, A.H., Allen, L.H., Boote, K.J., Bowes, G.: Soyabean photosynthesis, Rubisco, and carbohydrate enzymes function at supraoptimal temperatures in elevated CO2.-J. Plant Physiol. 158: 295–307, 2001.

    Article  CAS  Google Scholar 

  • Widodo, W., Vu, J.C.V., Boote, K.J., Baker, J.T., Allen, L.H., Jr.: Elevated growth CO2 delays drought stress and accelerates recovery of rice leaf photosynthesis.-Environ. exp. Bot. 49: 259–272, 2003.

    Article  CAS  Google Scholar 

  • Wong, J.H., Kang, T., Buchanan, B.B.: A novel PFP (pyrophosphate fructose-6-phosphate 1-phosphotransferase) from carrot roots. Relations to PFK from the same source.-FEBS Lett. 238: 405–410, 1988.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Balogh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nádas, E., Balogh, Á., Kiss, F. et al. Role of fructose-1,6-bisphosphatase, fructose phosphotransferase, and phosphofructokinase in saccharide metabolism of four C3 grassland species under elevated CO2 . Photosynthetica 46, 255–261 (2008). https://doi.org/10.1007/s11099-008-0042-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-008-0042-8

Additional key words

Navigation