Skip to main content

Advertisement

Log in

Corrections to current approaches used to calculate energy partitioning in photosystem 2

  • Original Papers
  • Published:
Photosynthetica

Abstract

We analyzed several approaches dealing with the components of non-photochemical energy dissipation and introduced improved versions of the equations used to calculate this parameter. The usage of these formulae depends on the conditions of the sample (acclimation to dark or irradiation, presence or absence of the “actinic light”). The parameter known as “excess” cannot be used as a component of energy partitioning. In reality, this parameter reflects the differences between potential and actual quantum yields of photochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

PS:

photosystem

WT:

wild type

Φf,CON :

combined quantum efficiency (yield) of fluorescence and constitutive thermal dissipation

ΦNF :

quantum yield of thermal dissipation associated with the presence of non-functional PS2

ΦP :

actual quantum yield of photochemistry (electron transport) in PS2

ΦPS2 :

potential quantum yield of photochemistry in PS2

ΦREG :

quantum yield of dark-reversible non-photochemical quenching of the excitation energy.

References

  • Bilger, W., Björkman, O.: Relationships among violaxanthin de-epoxidation, thylakoid membrane conformation, and nonphotochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.).-Planta 193: 238–246, 1994.

    Article  CAS  Google Scholar 

  • Cailly, A.L., Rizza, F., Genty, B., Harbinson, J.: Fate of excitation at PS2 in leaves: The non-photochemical side.-Plant Physiol. Biochem. (special issue): 86, 1996.

  • Demmig-Adams, B., Adams, W.W., III, Baker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation.-Physiol. Plant. 98: 253–264, 1996.

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87–90, 1989.

    CAS  Google Scholar 

  • Hakala, M., Tuominen, I., Keränen, M., Tyystjärvi, T., Tyystjärvi, E.: Evidence of the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II.-Biochim. biophys. Acta 1706: 68–80, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, L., Förster, B., Pogson, B.J., Chow, W.S.: A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of Photosystem II.-Photosynth. Res. 84: 43–49, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, L., Furbank, R.T., Chow, W.S.: A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence.-Photosynth. Res. 82: 73–81, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka, K., Kato, M.C., Hirose, T.: Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves.-Physiol. Plant. 121: 699–708, 2004.

    Article  CAS  Google Scholar 

  • Horton, P., Ruban, A.V., Walters, R.G.: Regulation of light harvesting in green plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 655–684, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kato, M.C., Hikosaka, K., Hirotsu, N., Makino, A., Hirose, T.: The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II.-Plant Cell Physiol. 44: 318–325, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kitajima, M., Butler, W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.-Biochim. biophys. Acta 376: 105–115, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev, D., Hendrickson, L.: Energy partitioning in photosystem II complexes subjected to photoinhibitory treatment.-Funct. Plant Biol. 34: 214–220, 2007.

    Article  CAS  Google Scholar 

  • Kornyeyev, D., Holaday, A.S., Logan, B.A.: Predicting the extent of photosystem II photoinactivation using chlorophyll a fluorescence parameters measured during illumination.-Plant Cell Physiol. 44: 1064–1070, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev, D., Holaday, A.S., Logan, B.A.: Minimization of the photon energy absorbed by ‘closed’ reaction centers of photosystem 2 as a photoprotective strategy in higher plants.-Photosynthetica 42: 377–386, 2004.

    Article  CAS  Google Scholar 

  • Kornyeyev, D., Logan, B.A., Payton, P., Allen, R.D., Holaday, A.S.: Enhanced photochemical light utilization and decreased chilling-induced photoinactivation of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes.-Physiol. Plant. 113: 323–331, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev, D., Logan, B.A., Payton, P., Allen, R.D., Holaday, A.S.: Field-grown cotton plants with elevated activity of chloroplastic glutathione reductase show no significant alteration of diurnal or seasonal patterns of excitation energy partitioning and CO2 fixation.-Field Crops Res. 94: 165–175, 2005.

    Article  Google Scholar 

  • Kornyeyev, D., Logan, B.A., Tissue, D.T., Allen, R.D., Holaday, A.S.: Compensation for photosystem II photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation.-Plant Cell Physiol. 47: 437–446, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, D.M., Johnson, G., Kiirats, O., Edwards, G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.-Photosynth. Res. 79: 209–218, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Laisk, A., Oja, V., Rasulov, B., Eichelmann, H., Sumberg, A.: Quantum yield and rate constants of photochemical and nonphotochemical excitation quenching. Experiment and model.-Plant Physiol. 115: 803–815, 1997.

    PubMed  CAS  Google Scholar 

  • Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S., Niyogi, K.K.: A pigment-binding protein essential for regulation of photosynthetic light harvesting.-Nature 403: 391–395, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H.K., Burkart, S.: Photosynthesis and light stress.-Bulg. J. Plant Physiol. 25: 3–16, 1999.

    CAS  Google Scholar 

  • Logan, B.A., Adams, W.W., III, Demmig-Adams, B.: Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions.-Funct. Plant Biol. 34: 853–859, 2007.

    Article  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide.-J. exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Müller, P., Li, X.-P., Niyogi, K.K.: Non-photochemical quenching. A response to excess light energy.-Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  Google Scholar 

  • Oxborough, K., Baker, N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv′/Fm′ without measuring Fo′.-Photosynth. Res. 54: 135–142, 1997.

    Article  CAS  Google Scholar 

  • Quick, W.P., Stitt, M.: An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves.-Biochim. biophys. Acta 977: 287–296, 1989.

    Article  CAS  Google Scholar 

  • Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships.-Photosynthetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Schreiber, U., Bilger, W., Hormann, H., Neubauer, C.: Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance.-In: Raghavendra, A.S. (ed.): Photosynthesis: A Comprehensive Treatise. Pp. 320–336. Cambridge University Press, Cambridge 1998.

    Google Scholar 

  • Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.-Photosynth. Res. 10: 51–62, 1986.

    Article  CAS  Google Scholar 

  • Shinkarev, V.P., Govindjee: Insight into the relationship of chlorophyll a fluorescence yield to the concentration of its natural quenchers in oxygenic photosynthesis.-Proc. nat. Acad. Sci. USA 90: 7466–7469, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Tsonev, T.D., Hikosaka, K.: Contribution of photosynthetic electron transport, heat dissipation, and recovery of photoinactivated photosystem II to photoprotection at different temperatures in Chenopodium album leaves.-Plant Cell Physiol. 44: 828–835, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 25: 147–150, 1990.

    Article  Google Scholar 

  • Walters, R.G., Horton, P.: Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves.-Photosynth. Res. 27: 121–133, 1991.

    Article  CAS  Google Scholar 

  • Walters, R.G., Horton, P.: Theoretical assessment of alternative mechanisms for non-photochemical quenching of PS II fluorescence in barley leaves.-Photosynth. Res. 36: 119–139, 1993.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kornyeyev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornyeyev, D., Holaday, A.S. Corrections to current approaches used to calculate energy partitioning in photosystem 2. Photosynthetica 46, 170–178 (2008). https://doi.org/10.1007/s11099-008-0028-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-008-0028-6

Additional key words

Navigation