, 46:156 | Cite as

Crassulacean acid metabolism in the epiphytic fern Patycerium bifurcatum

  • G. Rut
  • J. Krupa
  • Z. Miszalski
  • A. Rzepka
  • I. ŚlesakEmail author
Brief Communication


The epiphytic fern Platycerium bifurcatum grows in different habitats characterized by drought and high irradiance stress. The plant shows diurnal malate oscillations, indicative for CAM expression only in cover leaves, but not in sporotrophophyll. In P. bifurcatum cover leaves exposed to high irradiance and desiccation, the decrease in both CO2 assimilation (P N) and stomatal conductance (g s) was accompanied with occurrence of diurnal malate oscillations. Exogenously applied abscisic acid (ABA) induced the decrease in P N and g s, but no clear change in malate oscillations. The measurements of the maximum quantum efficiency of photosystem 2 (Fv/Fm) under high irradiance showed distinct photoinhibition, but no clear changes in Fv/Fm due to desiccation and ABA-treatment were found.

Additional key words

abscisic acid chlorophyll fluorescence drought stress malate net photosynthetic rate photosystem 2 stomatal conductance 



abscisic acid


the maximum quantum efficiency of photosystem 2


stomatal conductance


malic enzymes [EC]


oxaloacetic acid


net photosynthetic rate




phosphoenolpyruvate carboxylase (EC


phosphoenolpyruvate carboxykinase (EC


  1. Benzing, D.H.: The vegetative basis of vascular epiphytism.-Selbyana 9: 23–43, 1986.Google Scholar
  2. Black, C.C., Osmond, C.B.: Crassulacean acid metabolism photosynthesis: ‘working the night shift’.-Photosynth. Res. 76: 329–341, 2003.PubMedCrossRefGoogle Scholar
  3. Broetto, F., Lüttge, U., Ratajczak, R.: Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum.-Funct. Plant Biol. 29: 13–23, 2002.CrossRefGoogle Scholar
  4. Carter, J.P., Martin, C.E.: The occurrence of crassulacean acid metabolism among epiphytes in a high-rainfall region of Costa Rica.-Selbyana 15: 104–106, 1994.Google Scholar
  5. Chu, C., Dai, Z., Ku, M.S.B., Edwards, G.E.: Induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid.-Plant Physiol. 93: 1253–1260, 1990.PubMedCrossRefGoogle Scholar
  6. Cushman, J.C., Bohnert, H.J.: Crassulacean acid metabolism: Molecular genetics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 305–332, 1999.PubMedCrossRefGoogle Scholar
  7. Cushman, J.C., Borland, A.M.: Induction of Crassulacean acid metabolism by water limitation.-Plant Cell Environ. 25: 295–310, 2002.PubMedCrossRefGoogle Scholar
  8. Griffiths, H.: Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes.-In: Lüttge, U. (ed.): Vascular Plants as Epiphytes: Evolution and Ecophysiology. Pp. 42–86. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong 1989.Google Scholar
  9. Hew, C.-S., Wong, Y.S.: Photosynthesis and respiration of ferns in relation to their habitat.-Amer. Fern J. 64: 40–48, 1974.CrossRefGoogle Scholar
  10. Holtum, J.A.M., Winter, K.: Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns.-Aust. J. Plant Physiol. 26: 749–757, 1999.CrossRefGoogle Scholar
  11. Kluge, M., Avadhani, P.N., Goh, C.J.: Gas exchange and water relations in epiphytic tropical ferns.-In: Lüttge, U. (ed.): Vascular Plants as Epiphytes: Evolution and Ecophysiology. Pp. 87–108. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong 1989.Google Scholar
  12. Libik, M., Pater, B., Elliot, S., Ślesak, I., Miszalski, Z.: Malate accumulation in different organs of Mesembryanthemum crystallinum L. following age-dependent or salinity-triggered CAM metabolism.-Z. Naturforsch. 59c: 223–228, 2004.Google Scholar
  13. Lüttge, U.: The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity.-New Phytol. 125: 59–71, 1993.CrossRefGoogle Scholar
  14. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence-a practical guide.-J. exp. Bot. 51: 659–668, 2000.PubMedCrossRefGoogle Scholar
  15. Menon, M.K.C., Lal, M.: Morphogenetic role of kinetin and abscisic acid in the moss Physcomitrium.-Planta 115: 319–328, 1974.CrossRefGoogle Scholar
  16. Miszalski, Z., Niewiadomska, E., Ślesak, I., Lüttge, U., Kluge, M., Ratajczak, R.: The effect of irradiation on carboxylating/decarboxylating enzymes and fumarase activities in Mesembryanthemum crystallinum L. exposed to salinity stress.-Plant Biol. 3: 17–23, 2001.CrossRefGoogle Scholar
  17. Möllering, H.: L-(-) malate.-In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. 3rd Ed. Vol. 7. Pp. 39–47. VHC Verlagsgesellschaft, Weinheim 1985.Google Scholar
  18. Nimmo, H.G.: The regulation of phosphoenolpyruvate carboxylase in CAM plants.-Trends Plant Sci. 5: 75–80, 2000.PubMedCrossRefGoogle Scholar
  19. Ong, B.-L., Koh, C.K.-K., Wee, Y-C.: Relationship between fern development and CAM in Pyrrosia piloselloides (L.) Price.-Photosynthetica 34: 147–149, 1997.CrossRefGoogle Scholar
  20. Ravensberg, W.J., Hennipman, E.: The Pyrrosia species formerly referred to as Drymoglossum and Saxiglossum.-Leiden bot. Ser. 9: 281–310, 1986.Google Scholar
  21. Rut, G., Krupa, J., Rzepka, A.: The intensity of photosynthesis and respiration of sporophyll leaves in the epiphytic fern Platycerium bifurcatum under water stress conditions.-Acta Physiol. Plant. (Suppl. “Ecophysiological Aspects of Plant Responses to Stress Factors”): 88, 2001.Google Scholar
  22. Rut, G., Krupa, J., Rzepka, A.: Effects of simulated osmotic drought on intensity of gaseous exchange in gametophytes of the fern Platycerium bifurcatum.-In: Ecophysiology of Plant Stress. Proceedings of the 5th International Conference. Pp. 75–78. Nitra 2002.Google Scholar
  23. Rut, G., Krupa, J., Rzepka, A.: The influence of simulated osmotic drought on functioning of the photosynthetic appratus in gametophytes of the epiphytic fern Platycerium bifurcatum.-Pol. J. nat. Sci. (Suppl. 1): 114–115, 2003.Google Scholar
  24. Sinclair, R.: Water relations of tropical epiphytes. III. Evidence for Crassulacean acid metabolism.-J. exp. Bot. 35: 1–7, 1984.CrossRefGoogle Scholar
  25. Ślesak, I., Miszalski, Z., Karpinska, B., Niewiadomska, E., Ratajczak, R., Karpinski, S.: Redox control of oxidative stress responses in the C3-CAM intermediate plant Mesembryanthemum crystallinum.-Plant Physiol. Biochem. 40: 669–677, 2002.CrossRefGoogle Scholar
  26. Smith, J.A.C., Winter, K.: Taxonomic distribution of crassulacean acid metabolism.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Pp. 427–436. Springer-Verlag, Berlin 1996.Google Scholar
  27. Winter, K., Wallace, B.J., Stocker, G.C., Roksandic, Z.: Crassulacean acid metabolism in Australian vascular epiphytes and some related species.-Oecologia 57: 129–141, 1983.CrossRefGoogle Scholar
  28. Wong, S.C., Hew, C.S.: Diffusive resistance, titratable acidity, and CO2 fixation in two tropical epiphytic ferns.-Amer. Fern J. 66: 121–124, 1976.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2008

Authors and Affiliations

  • G. Rut
    • 1
  • J. Krupa
    • 1
  • Z. Miszalski
    • 2
  • A. Rzepka
    • 1
  • I. Ślesak
    • 2
    Email author
  1. 1.Department of Plant Physiology, Institute of BiologyPedagogical AcademyPoland
  2. 2.Institute of Plant PhysiologyPolish Academy of SciencesKrakówPoland

Personalised recommendations