Skip to main content
Log in

Carbon fixation and carbonic anhydrase activity in Haslea ostrearia (Bacillariophyceae) in relation to growth irradiance

  • Original Papers
  • Published:
Photosynthetica

Abstract

The metabolic pathway of primary carbon fixation was studied in a peculiar pennate marine diatom, Haslea ostrearia (Bory) Simonsen, which synthesizes and accumulates a blue pigment known as “marennine”. Cells were cultured in a semi-continuous mode under saturating [350 µmol(photon) m−2 s−1] or non-saturating [25 µmol(photon) m−2 s−1] irradiance producing “blue” (BC) and “green” (GC) cells, characterized by high and low marennine accumulation, respectively. Growth, pigment contents (chlorophyll a and marennine), 14C accumulation in the metabolites, and the carbonic anhydrase (CA) activity of the cells were determined during the exponential growth phase. Growth rate and marennine content were closely linked to irradiance during growth: higher irradiance increased both growth rate and marennine content. On the other hand, the Chl a concentration was lower under saturating irradiance. The distribution between the Calvin-Benson (C3) and β-carboxylation (C4) pathways was very different depending on the irradiance during growth. Metabolites of the C3 cycle contained about 70 % of the total fixed radioactivity after 60 s of incorporation into cells cultured under the non-saturating irradiance (GC), but only 47 % under saturating irradiance (BC). At the same time, carbon fixation by β-carboxylation was 24 % in GC versus about 41 % in BC, becoming equal to that in the C3 fixation pathway in the latter. Internal CA activity remained constant, but the periplasmic CA activity was higher under low than high irradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badger, M.R., Price, G.D.: The CO2 concentrating mechanism in cyanobacteria and microalgae.-Physiol. Plant. 84: 606–615, 1992.

    Article  CAS  Google Scholar 

  • Badger, M.R., Price, G.D.: The role of carbonic anhydrase in photosynthesis.-Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 369–392, 1994.

    Article  CAS  Google Scholar 

  • Beardall, J.: Photosynthesis and photorespiration in marine phytoplankton.-Aquat. Bot. 34: 105–130, 1989.

    Article  CAS  Google Scholar 

  • Beardall, J., Mukerji, D., Glover, H.E., Morris, I.: The path of carbon in photosynthesis by marine phytoplankton.-J. Phycol. 12: 409–417, 1976.

    CAS  Google Scholar 

  • Birmingham, B.C., Coleman, J.R., Colman, C.: Measurement of photorespiration in algae.-Plant Physiol. 69: 259–262, 1982.

    PubMed  CAS  Google Scholar 

  • Coudret, A., Ferron, F., Jolivet, P., Tremblin, G., Bergeron, E., Sourie, M.C.: Fate of metabolites issued from 14C dark fixation into brown seaweeds; connection with their respective biology.-Photosynthetica 26: 235–245, 1992.

    CAS  Google Scholar 

  • Cunningham, F.X., Jr., Vonshak, A., Gantt, E.: Photoacclimation in the red alga Porphyridium cruentum. Changes in photosynthetic enzymes, electron carriers, and light saturated rate of photosynthesis as a function of solar irradiance and spectral quality.-Plant Physiol. 100: 1142–1149, 1992.

    PubMed  CAS  Google Scholar 

  • Descolas-Gros, C., Oriol, L.: Variations in carboxylase activity in marine phytoplankton cultures. β-carboxylation in carbon flux studies.-Mar. Ecol. Prog. Ser. 85: 163–169, 1992.

    Article  CAS  Google Scholar 

  • Dionisio, M.L., Tsuzuki, M., Miyachi, S.: Light requirement for carbonic anhydrase induction in Chlamydomonas reinhardtii.-Plant Cell Physiol. 30: 207–213, 1989a.

    CAS  Google Scholar 

  • Dionisio, M.L., Tsuzuki, M., Miyachi, S.: Blue light induction of carbonic anhydrase activity in Chlamydomonas reinhardtii.-Plant Cell Physiol. 30: 215–219, 1989b.

    CAS  Google Scholar 

  • Geider, R.J., MacIntyre, H.L., Kana, T.M.: Dynamic model of phytoplankton growth and acclimation: Response to the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient limitation and temperature.-Mar. Ecol. Prog. Ser. 148: 187–200, 1997.

    Article  Google Scholar 

  • Glover, H.E.: Ribulosebisphosphate carboxylase/oxygenase in marine organisms.-Int. Rev. Cytol. 115: 67–137, 1989.

    CAS  Google Scholar 

  • Graham, D., Reed, M.L., Patterson, B.D., Hockley, D.G.: Distribution and physiology of plant and algal carbonic anhydrases.-Ann. New York Acad. Sci. 429: 222–237, 1984.

    Article  CAS  Google Scholar 

  • Granum, E., Raven, J.A., Leegood, R.C.: How do marine diatoms fix 10 billion tonnes of inorganic carbon per year?-Can. J. Bot. 83: 898–908, 2005.

    Article  CAS  Google Scholar 

  • Haglund, K., Ramazanov, Z., Mtolera, M., Pedersén, M.: Role of external carbonic anhydrase in light-dependent alkalization by Fucus serratus L. and Laminaria saccharina (L.) Lamour (Phaeophyta).-Planta 188: 1–6, 1992.

    Article  CAS  Google Scholar 

  • Johnston, A.M., Raven, J.A., Beardall, J., Leegood, R.C.: Photosynthesis in a marine diatom.-Nature 412: 40–41, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Melis, A., Neidhardt, J., Benemann, J.R.: Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibits higher photosynthetic productivities and photon use efficiencies than normally pigmented cells.-J. appl. Phycol. 10: 515–525, 1999.

    Article  Google Scholar 

  • Morant-Manceau, A., Nguyen, T.L.N., Pradier, E., Tremblin, G.: Carbonic anhydrase activity and photosynthesis in marine diatoms.-Eur. J. Phycol. 42: 1–8, 2007.

    Article  CAS  Google Scholar 

  • Morris, I.: Paths of carbon assimilation in marine phytoplankton.-In: Falkowski, P.G. (ed.): Primary Productivity in the Sea. Pp. 139–159. Plenum Press, New York 1980.

    Google Scholar 

  • Mortain-Bertrand, A.: Influence des fluctuations lumineuses sur le métabolisme photosynthétique et la productivité de diatomées tempérées et antarctiques en culture.-Thèse Doct. Univ. Paris VI, Paris 1987.

    Google Scholar 

  • Mortain-Bertrand, A., Descolas-Gros, C., Jupin, H.: Short-term 14C incorporation in Skeletonema costatum (Greville) Cleve (Bacillariophyceae) as a function of light regime.-Phycologia 26: 262–269, 1987.

    CAS  Google Scholar 

  • Mouget, J.L., Tremblin, G., Morant-Manceau, A., Morançais, M., Robert, J.M.: Long-term photoacclimation of Haslea ostrearia (Bacillariophyta): Effect of irradiance on growth rates, pigment content and photosynthesis.-Eur. J. Phycol. 34: 109–115, 1999.

    Article  Google Scholar 

  • Nassiri, Y., Robert, J.M., Rincé, Y., Ginsburger-Vogel, T.: The cytoplasmic fine structure of the diatom Haslea ostrearia (Bacillariophyceae) in relation to marennine production.-Phycologia 37: 84–91, 1998.

    Article  Google Scholar 

  • Parker, M.S., Armbrust, E.V.: Synergistic effects of light, temperature, and nitrogen source on transcription of genes for carbon and nitrogen metabolism in the centric diatom Thalassiosira pseudonana (Bacillariophyceae).-J. Phycol. 41: 1142–1153, 2005.

    Article  CAS  Google Scholar 

  • Parker, M.S., Armbrust, E.V., Piovia-Scott, J., Keil, R.G.: Induction of photorespiration by light in the centric diatom Thalassiosira weissflogii (Bacillariophyceae): molecular characterization and physiological consequences.-J. Phycol. 40: 557–567, 2004.

    Article  CAS  Google Scholar 

  • Pouvreau, J.B., Morancais, M., Fleury, F., Rosa, P., Thion, L., Cahingt, B., Zal, F., Fleurence, J., Pondaven, P.: Preliminary characterization of the blue-green pigment “marennine” from the marine tychopelagic diatom Haslea ostrearia (Gaillon/Bory) Simonsen.-J. appl. Phycol. 18: 757–767, 2006.

    Article  CAS  Google Scholar 

  • Raven, J.A.: Photosynthetic and non-photosynthetic roles of carbonic anhydrase in algae and cyanobacteria.-Phycologia 34: 93–101, 1995.

    Google Scholar 

  • Raven, J.A.: Inorganic carbon acquisition by marine autotrophs.-Adv. bot. Res. 27: 85–209, 1997.

    CAS  Google Scholar 

  • Raven, J.A., Beardall, J.: Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms.-In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (ed.): Photosynthesis in Algae. Pp. 225–244. Kluwer Academic Publ., Dordrecht-Boston-London 2003.

    Google Scholar 

  • Rech, M.: Effets de l’éclairement visible et ultraviolet sur la croissance et la photosynthèse de microalgues: incidences sur l’écophysiologie du phytoplankton des claires ostréicoles.-Thèse Doct. Univ. du Maine, Le Mans 2004.

    Google Scholar 

  • Reinfelder, J.R., Kraepiel, A.M.L., Morel, F.M.: Unicellular C4 photosynthesis in a marine diatom.-Nature 407: 996–999, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Reinfelder, J.R., Milligan, A.J., Morel, F.M.M.: The role of the C4 pathway in carbon accumulation and fixation in a marine diatom.-Plant Physiol. 135: 2106–2111, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Riebesell, U.: Carbon fix for a diatom.-Nature 407: 959–960, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Riley, J.P., Chester, R.: The dissolved gases in sea water. Carbon dioxide.-In: Riley, J.P., Chester, R. (ed.): Introduction to Marine Chemistry. Pp. 121–151. Academic Press, London-New York 1971.

    Google Scholar 

  • Rincé, Y.: Intervention des diatomées dans l’écologie des claires ostréicoles de la baie de Bourgneuf.-Thèse Doct. Univ. Nantes, Nantes 1978.

    Google Scholar 

  • Robert, J.M.: Fertilité des eaux des claires ostréicoles et verdissement: Utilisation de l’azote par les diatomées dominantes.-Thèse Doct. Univ. Nantes, Nantes 1983.

    Google Scholar 

  • Robert, J.M., Morançais, M., Pradier, E., Mouget, J.L., Tremblin, G.: Extraction, purification and spectrophotometric analysis of the blue pigment “marennine” produced by the diatom Haslea ostrearia.-J. appl. Phycol. 14: 299–305, 2002.

    Article  CAS  Google Scholar 

  • Schürmann, P.: Separation of phosphate esters and algal extracts by thin-layer electrophoresis and chromatography.-J. Chromatogr. 39: 507–509, 1969.

    Article  PubMed  Google Scholar 

  • Shubert, H., Tremblin, G., Robert, J.M., Sagert, S., Rince, Y.: In vivo fluorescence measurement of photosynthesis of Haslea ostrearia in relation to marennine content.-Diatom Res. 10: 341–349, 1995.

    Google Scholar 

  • Speziale, B.J., Schreiner, S.P., Giammatteo, P.A., Schindler, J.E.: Comparison of N,N-dimethylformamide, dimethyl sulfoxide, and acetone for extraction of phytoplankton chlorophyll.-Can. J. Fish. aquat. Sci. 41: 1519–1522, 1984.

    Article  CAS  Google Scholar 

  • Tremblin, G., Jolivet, P., Coudret, A.: Light quality effects on subsequent dark 14CO2-fixation in Fucus serratus.-Hydrobiologia 260/261: 471–475, 1993.

    Article  Google Scholar 

  • Tremblin, G., Robert, J.M.: Photosynthesis of Haslea ostrearia in relation with its blue pigmentation.-Compt. rend. Acad. Sci. Paris 319: 939–944, 1996.

    Google Scholar 

  • Tremblin, G., Robert, J.-M.: Carbon fixation by the peculiar marine diatom Haslea ostrearia.-Photosynthetica 39: 215–220, 2001.

    Article  Google Scholar 

  • Zimba, P.V., Sullivan, M.J., Glover, H.E.: Carbon fixation in cultured marine benthic diatoms.-J. Phycol. 26: 306–311, 1990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tremblin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rech, M., Morant-Manceau, A. & Tremblin, G. Carbon fixation and carbonic anhydrase activity in Haslea ostrearia (Bacillariophyceae) in relation to growth irradiance. Photosynthetica 46, 56–62 (2008). https://doi.org/10.1007/s11099-008-0011-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-008-0011-2

Additional key words

Navigation