Skip to main content

Down-regulation of photosystem 2 efficiency and spectral reflectance in mango leaves under very low irradiance and varied chilling treatments

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In order to elucidate the effects of chilling-stress at night on photosystem 2 (PS2) efficiency under dim irradiance (DI), mango leaves were chilled to varied extent (8–3 °C) and for varied duration (0–12 h) in growth cabinets in the dark, and then exposed to DI (20 μmol m−2 s−1 PPFD) at each chilling-temperature for 1 h. Chilling in the dark had little effect on Fv/Fm of mango leaves. But both the extent and duration of chilling pre-treatments significantly affected Fv’/Fm’ when leaves were exposed to DI. This down-regulation of PS2 efficiency was closely related to xanthophyll de-epoxidation, assessed as photochemical reflectance index (PRI) and calculated from leaf spectral reflectance [(R531 − R570)/(R531 + R570)], and non-photochemical quenching (NPQ). The down-regulation of PS2 is a defence mechanism initiated at predawn in winter to alleviate the damage of PS2 by the sudden and strong irradiation at sunrise. Mango leaves, transferred suddenly from warm and dark room to DI and chilling showed a slight down-regulation of PS2 efficiency, in spite of an increased xanthophyll de-epoxidation. This might have been due to the unavailability of some cofactors required for NPQ.

This is a preview of subscription content, access via your institution.

Abbreviations

Chl:

chlorophyll

DI:

dim irradiance

Fv/Fm :

potential efficiency of PS2

Fv’/Fm’:

actual efficiency of PS2 under irradiation

HI:

high irradiance

NPQ:

non-photochemical quenching

PPFD:

photon flux density

PRI:

photochemical reflectance index [(R531 − R570)/(R531 + R570)]

PS2:

photosystem 2

References

  1. Adams, W.W., III, Demmig-Adams, B., Logan, B.A., Barker, D.H., Osmond, C.B.: Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest.-Plant Cell Environ. 22: 125–136, 1999.

    CAS  Google Scholar 

  2. Adams, W.W., III, Demmig-Adams, B., Rosenstiel, T.N., Ebbert, V.: Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter.-Photosynth. Res. 67: 51–62, 2001.

    CAS  PubMed  Google Scholar 

  3. Adams, W.W., III, Ryanzarter, C., Ebbert, V., Demmig-Adams, B.: Photoprotective strategies of overwintering evergreens.-BioSciences 54: 41–49, 2004.

    Google Scholar 

  4. Allen, D.J., Ort, D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants.-Trends Plant Sci. 6: 36–42, 2001.

    CAS  PubMed  Google Scholar 

  5. Allen, D.J., Ratner, K., Giller, Y.E., Gussakovsky, E.E., Shahak, Y., Ort, D.R.: An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L.).-J. exp. Bot. 51: 1893–1902, 2000.

    CAS  Article  PubMed  Google Scholar 

  6. Bachmann, K.M., Ebbert, V., Adams, W.W., III, Verhoeven, A.S., Barry, A. Logan, B.A., Demmig-Adams, B.: Effects of lincomycin on PSII efficiency, non-photochemical quenching, D1 protein and xanthophyll cycle during photoinhibition and recovery.-Funct. Plant Biol. 31: 803–813, 2004.

    CAS  Article  Google Scholar 

  7. Baker, N.R.: Chilling stress and photosynthesis.-In: Foyer, C.H., Mullineaux, P.M. (ed.): Cause of Photooxidative Stress and Amelioration of Defense Systems in Plants. Pp. 127–154. CRC Press, Boca Raton 1994.

    Google Scholar 

  8. Bilger, W., Björkman, O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.-Photosynth. Res. 25: 173–185, 1990.

    CAS  Google Scholar 

  9. Close, D.C., Beadle, C.L., Hovenden, M.J.: Cold-induced photoinhibition and foliar pigment dynamics of Eucalyptus nitens seedlings during establishment.-Aust. J. Plant Physiol. 28: 1133–1141, 2001.

    CAS  Google Scholar 

  10. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Phys. Plant mol. Biol. 43: 599–626, 1992.

    CAS  Google Scholar 

  11. Demmig-Adams, B., Adams, W.W., III, Barker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation.-Physiol. Plant. 98: 253–264, 1996.

    CAS  Article  Google Scholar 

  12. Ensminger, I., Sveshnikov, D., Campbell, D.A., Funk, C., Jansson, S., Lloyd, J., Shibistova, O., Öquist, G.: Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests.-Glob. Change Biol. 10: 1–14, 2004.

    Article  Google Scholar 

  13. Gamon, J.A., Field, C.B., Bilger, W., Björkman, O., Fredeen, A.L., Peñuelas, J.: Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies.-Oecologia 85: 1–7, 1990.

    Article  Google Scholar 

  14. Gamon, J.A., Field, C.B., Fredeen, A.L., Thayer, S.: Assessing photosynthetic downregulation in sunflower stands with an optically-based model.-Photosynth. Res. 67: 113–125, 2001.

    CAS  Article  PubMed  Google Scholar 

  15. Gamon, J.A., Filella, I., Peñuelas, J.: The dynamic 531-nanometer Δreflectance signal: A survey of twenty angiosperm species.-In: Yamamoto, H.Y., Smith, C.M. (ed.): Photosynthetic Responses to the Environment. Pp. 127–177. American Society of Plant Physiologists, Rockville 1993.

    Google Scholar 

  16. Gamon, J.A., Peñuelas, J., Field, C.B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.-Remote Sens. Environ. 41: 35–44, 1992.

    Article  Google Scholar 

  17. Gamon, J.A., Serrano, L., Surfus, J.S.: The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels.-Oecologia 112: 492–501, 1997.

    Article  Google Scholar 

  18. Gamon, J.A., Surfus, J.S.: Assessing leaf pigment content and activity with a reflectometer.-New Phytol. 143: 105–117, 1999.

    CAS  Article  Google Scholar 

  19. Guo, J., Trotter, C.M.: Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species.-Funct. Plant Biol. 31: 255–265, 2004.

    CAS  Article  Google Scholar 

  20. Guo, Y.-H., Cao, K.-F.: Effect of night chilling on photosynthesis of two coffee species grown under different irradiances.-J. hortic. Sci. Biotechnol. 79: 713–716, 2004.

    CAS  Google Scholar 

  21. Hikosaka, K., Kato, M.C., Hirose, T.: Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves.-Physiol. Plant. 121: 699–708, 2004.

    CAS  Article  Google Scholar 

  22. Holt, N.E., Zigmantas, D., Valkunas, L., Li, X.P., Niyogi, K.K., Fleming, G.R.: Carotenoid cation formation and the regulation of photosynthetic light harvesting.-Science 307: 433–436, 2005.

    CAS  Article  PubMed  Google Scholar 

  23. Külheim, C., Ågren, J., Jansson, S.: Rapid regulation of light harvesting and plant fitness in the field.-Science 297: 91–93, 2002.

    PubMed  Google Scholar 

  24. Leegood, R.C.: Effects of temperature on photosynthesis and photorespiration.-In: Smirnoff, N. (ed.): Environment and Plant Metabolism. Flexibility and Acclimation. Pp. 45–62. Bios Sci. Publ., Oxford 1995.

    Google Scholar 

  25. Li, X.-G., Wang, X.-M., Meng, Q.-W., Zou, Q.: Factors liming photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance.-Photosynthetica 42: 257–262, 2004.

    CAS  Google Scholar 

  26. Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S., Niyogi, K.K.: A pigment-binding protein essential for regulation of photosynthetic light harvesting.-Nature 403: 391–395, 2000.

    CAS  PubMed  Google Scholar 

  27. Lidon, F.C., Loureiro, A.S., Vieira, D.E., Bilhó, E.A., Nobre, P., Costa, R.: Photoinhibition in chilling stressed wheat and maize.-Photosynthetica 39: 161–166, 2001.

    CAS  Google Scholar 

  28. Long, S.P., Humphries, S., Falkowski, P.G.: Photoinhibition of photosynthesis in nature.-Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 633–662, 1994.

    CAS  Article  Google Scholar 

  29. Morosinotto, T., Caffarri, S., Dall’Osto, L., Bassi, R.: Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids.-Physiol. Plant. 119: 347–354, 2001.

    Google Scholar 

  30. Müller, P., Li, X.-P., Niyogi, K.K.: Non-photochemical quenching. A response to excess light energy.-Plant Physiol. 125: 1558–1566, 2001.

    PubMed  Google Scholar 

  31. Osmond, C.B., Grace, S.C.: Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis?-J. exp. Bot. 46: 1351–1362, 1995.

    CAS  Google Scholar 

  32. Peñuelas, J., Gamon, J.A., Fredeen, A.L., Merino, J., Field, C.B.: Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves.-Remote Sens. Environ. 48: 135–146, 1994.

    Article  Google Scholar 

  33. Stylinski, C.D., Gamon, J.A., Oechel, W.C.: Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species.-Oecologia 131: 366–374, 2002.

    Google Scholar 

  34. Szalai, G., Janda, T., Páldi, E., Szigeti, Z.: Role of light in the development of post-chilling symptoms in maize.-J. Plant Physiol. 148: 378–383, 1996.

    CAS  Google Scholar 

  35. Tsonev, T., Velikova, V., Georgieva, K., Hyde, P.F., Jones, H.G.: Low temperature enhances photosynthetic down-regulation in French bean (Phaseolus vulgaris L.) plants.-Ann. Bot. 91: 343–352, 2003.

    CAS  Article  PubMed  Google Scholar 

  36. Verhoeven, A.S., Adams, W.W., III, Demmig-Adams, B.: Close relationship between the state of the xanthophyll cycle pigments and photosystem II efficiency during recovery from winter stress.-Physiol. Plant. 96: 567–576, 1996.

    CAS  Article  Google Scholar 

  37. Verhoeven, A.S., Adams, W.W., III, Demmig-Adams, B.: Two forms of sustained xanthophylls cycle-dependent energy dissipation in overwintering Euonymus kiautschovicus.-Plant Cell Environ. 21: 893–903, 1998.

    Article  Google Scholar 

  38. Watson, T.L., Close, D.C., Davidson, N.J., Davies, N.W.: Pigment dynamics during cold-induced photoinhibition of Acacia melanoxylon.-Funct. Plant Biol. 31: 481–489, 2004.

    CAS  Google Scholar 

  39. Xu, C.C., Li, L., Kuang, T.: Photoprotection in chilling-sensitive and-resistant plants illuminated at a chilling temperature: role of the xanthophyll cycle in the protection against lumen acidification.-Aust. J. Plant Physiol. 27: 239–244, 2004.

    Google Scholar 

  40. Ying, J., Lee, E.A., Tollenaar, M.: Response of leaf photosynthesis during the grain-filling period of maize to duration of cold exposure, acclimation, and incident PPFD.-Crop Sci. 42: 1164–1172, 2002.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. -H. Weng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weng, J.H., Jhaung, L.H., Jiang, J.Y. et al. Down-regulation of photosystem 2 efficiency and spectral reflectance in mango leaves under very low irradiance and varied chilling treatments. Photosynthetica 44, 248–254 (2006). https://doi.org/10.1007/s11099-006-0015-8

Download citation

Additional key words

  • chlorophyll fluorescence
  • dim irradiance
  • leaf spectral reflectance
  • low temperature
  • Mangifera indica