, Volume 43, Issue 1, pp 55–64 | Cite as

Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.)

  • G. Aschan
  • H. Pfanz
  • D. Vodnik
  • F. Batič


Photosynthetic irradiance response of vegetative and reproductive structures of the green-flowered deciduous perennial green hellebore was studied by the comparative use of chlorophyll (Chl) fluorescence techniques and gas exchange measurements. All the Chl-containing organs (leaves, sepals, stalks, and fruits) examined were photosynthetically active showing high intrinsic efficiencies of photosystem 2 (Fv/Fm: 0.75–0.79) after dark adaptation. Even in the smaller fertile and sterile parts of the flower (nectaries and anthers) a remarkable photosynthetic competence was detected. With increasing photon flux densities (PFD) electron transport rates, actual quantum yields, and photochemical quenching coefficients of the main photosynthetic organs decreased in the order: leaf>sepal>fruit>stalk. At moderate to high PFDs the sepals achieved maximum electron transport rates corresponding to about 80 % of concomitant mature leaves. In contrast, maximum net photosynthetic rate of the sepals [2.3 μmol(CO2) m−2 s−1] were less than one fourth of the leaves [10.6 μmol(CO2) m−2 s−1]. This difference is explained by a 70–80 % lower stomatal density of sepals in comparison to leaves. As the basal leaves emerge late during fruit development, the photosynthetically active sepals are a major source of assimilates, contributing more than 60 % of whole-plant CO2 gain in early spring. The ripening dehiscent fruits are characterized by an effective internal re-fixation of the respirational carbon loss and thus additionally improve the overall carbon budget.

Additional key words

carbon budget chlorophyll fluorescence CO2 re-fixation floral photosynthesis nectaries sepals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antlfinger, A.E., Wendel, L.F.: Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchidaceae). — Amer. J. Bot. 84: 769–780, 1997.Google Scholar
  2. Aschan, G., Lösch, R.: Das Bestandesklima niederbergischer Buchenwälder. — Jahresber. naturwiss. Verein. Wuppertal 53: 89–111, 2000.Google Scholar
  3. Aschan, G, Pfanz, H.: Non-foliar photosynthesis — a strategy of additional carbon acquisition. — Flora 198: 81–97, 2003a.Google Scholar
  4. Aschan, G., Pfanz, H.: Non-foliar photosynthesis and its contribution to the overall carbon balance of plants. — Acta biol. sloven. 46(2): 3–10, 2003b.Google Scholar
  5. Bazzaz, F.A., Carlson, R.W.: Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. — New Phytol. 82: 223–232, 1979.Google Scholar
  6. Bazzaz, F.A., Carlson, R.W., Harper, J.L.: Contribution to reproductive effort by photosynthesis of flowers and fruits. — Nature 279: 554–555, 1979.Google Scholar
  7. Blanke, M.M., Lenz, F.: Fruit photosynthesis. — Plant Cell Environ. 12: 31–46, 1989.Google Scholar
  8. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.Google Scholar
  9. Clement, C., Mischler, P., Burrus, M., Audran, J.C.: Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. I. Corolla. — Int. J. Plant Sci. 158: 794–800, 1997a.Google Scholar
  10. Clement, C., Mischler, P., Burrus, M., Audran, J.C.: Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. II. Anther. — Int. J. Plant Sci. 158: 801–810, 1997b.Google Scholar
  11. Dueker, J., Arditti, J.: Photosynthetic 14CO2 fixation by green Cymbidium (Orchidaceae) flowers. — Plant Physiol. 43: 130–132, 1968.Google Scholar
  12. Galen, C., Dawson, T.E., Stanton, M.L.: Carpels as leaves: meeting the carbon cost of reproduction in an alpine buttercup. — Oecologia 95: 187–193, 1993.Google Scholar
  13. Genty, B.E., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. biophys. Acta 990: 87–92, 1989.Google Scholar
  14. Goh, C.J.: Rhythms of acidity and CO2 production in orchid flowers. — New Phytol. 93: 25–32, 1983.Google Scholar
  15. Grönegress P.: The structure of chromoplasts and their conversion to chloroplasts. — J. Microscopie (Paris) 19: 183–192, 1974.Google Scholar
  16. Heilmeier, H., Whale, D.M.: Carbon dioxide assimilation in the flowerhead of Arctium. — Oecologia 73: 109–115, 1987.Google Scholar
  17. Hetherington, S.E.: Profiling photosynthetic competence in mango fruit. — J. hortic. Sci. 72: 755–763, 1997.Google Scholar
  18. Hetherington, S.E., Smillie, R.M., Davies, W.J.: Photosynthetic activities of vegetative and fruiting tissues of tomato. — J. exp. Bot. 49: 1173–1181, 1998.Google Scholar
  19. Hew, C.S., Lee, G.L., Wong, S.C.: Occurrence of non-functional stomata in the flowers of tropical orchids. — Ann. Bot. 46: 195–201, 1980.Google Scholar
  20. Keijzer, C.J., Willemse, M.T.M.: Tissue interactions in the developing locule of Gasteria verrucosa during microsporogenesis. — Acta bot. neerl. 37: 475–492, 1988.Google Scholar
  21. Khoo, G.H., He, J., Hew, C.S.: Photosynthetic utilization of radiant energy by CAM Dendrobium flowers. — Photosynthetica 34: 367–376, 1997.Google Scholar
  22. Kirichenko, E.B., Chernyad'ev, I.I., Voronkova, T.V., Sokolova, R.S., Doman, N.G.: [Activity of the photosynthesis apparatus in orchids during flowering.] — Fiziol. Rast. 36: 710–716, 1989. [In Russ.]Google Scholar
  23. Kirichenko, E.B., Krendeleva, T.E., Kukarskikh, G.P., Nizovskaia, N.V.: [Photochemical activity in chloroplasts of anthers and caryopsis pericarp in cereals.] — Fiziol. Rast. 40: 250–254, 1993. [In Russ.]Google Scholar
  24. Larcher, W.: Ökophysiologie der Pflanzen. 6th Ed. — Ulmer, Stuttgart 2001.Google Scholar
  25. Luthra, Y.P., Sheoran, I.S., Singh, R.: Photosynthetic rates and enzyme activities of leaves, developing seeds and pod-wall of pigeon pea (Cajanus cajan L.). — Photosynthetica 17: 210–215, 1983.Google Scholar
  26. Marcelis, L.F.M., Hofman-Eijer, L.R.B.: The contribution of fruit photosynthesis to the carbon requirement of carbon requirement of cucumber fruits as affected by irradiance, temperature and ontogeny. — Physiol. Plant. 93: 476–483, 1995.Google Scholar
  27. Mathew, B.: Hellebores. — Alpine Garden Society, W.S. Cowell, Ipswich 1989.Google Scholar
  28. Moreshet, S., Green, G.C.: Photosynthesis and diffusion conductance of the Valencia orange fruit under field conditions. — J. exp. Bot. 31: 15–27, 1980.Google Scholar
  29. Obeso, J.R.: The costs of reproduction in plants. — New Phytol. 155: 321–348, 2002.Google Scholar
  30. Salopek-Sondi, B., Kovac, M., Ljubesic, N., Magnus, V.: Fruit initiation in Helleborus niger L. triggers chloroplast formation and photosynthesis in the perianth. — J. Plant Physiol. 157: 357–364, 2000.Google Scholar
  31. Salopek-Sondi, B., Kovac, M., Ljubesic, N., Magnus, V.: Developing fruit direct post-floral morphogenesis in Helleborus niger L. — J. exp. Bot. 53: 1949–1957, 2002.Google Scholar
  32. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. — In: Schulze, E.-D.; Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49–70. Springer-Verlag, Berlin — Heidelberg — New York 1994.Google Scholar
  33. Smillie, R.M.: Calvin cycle activity in fruit and the effect of heat stress. — Sci. Hortic. 51: 83–95, 1992.Google Scholar
  34. Vainstein, A., Sharon, R.: Biogenesis of petunia and carnation corolla chloroplasts: changes in the abundance of nuclear and plastid-encoded photosynthesis-specific gene products during flower development. — Physiol. Plant. 89: 192–198, 1993.Google Scholar
  35. Vemmos, S.N., Goldwin, G.K.: Stomatal and chlorophyll distribution of Cox's Orange Pippin apple flowers relative to other cluster parts. — Ann. Bot. 71: 245–250, 1993.Google Scholar
  36. Vemmos, S.N., Goldwin, G.K.: The photosynthetic activity of Cox's orange pippin apple flowers in relation to fruit setting. — Ann. Bot. 73: 385–391, 1994.Google Scholar
  37. Watson, M.A., Caspar, B.B.: Morphogenetic constraints on patterns of carbon distribution in plants. — Annu. Rev. Ecol. Syst. 15: 233–258, 1984.Google Scholar
  38. Weiss, D., Schönfeld, M., Halevy, A.H.: Photosynthetic activities in the Petunia corolla. — Plant Physiol. 87: 666–670, 1988.Google Scholar
  39. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. 144: 307–313, 1994.Google Scholar
  40. Werner, K., Ebel, F.: Zur Lebensgeschichte der Gattung Helleborus L. (Ranunculaceae). — Flora 189: 97–130, 1994.Google Scholar
  41. Werk, K.S., Ehleringer, J.R.: Photosynthesis by flowers in Encelia farinosa and Encelia californica (Asteraceae). — Oecologia 57: 311–315, 1983.Google Scholar
  42. Williams, K., Koch, G.W., Mooney, H.A.: The carbon balance of flowers of Diplacus aurantiacus (Scrophulariaceae). — Oecologia 66: 530–535, 1985.Google Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • G. Aschan
    • 1
  • H. Pfanz
    • 1
  • D. Vodnik
    • 2
  • F. Batič
    • 2
  1. 1.Applied BotanyUniversity of Duisburg-EssenEssenGermany
  2. 2.Agronomy Department, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations