Skip to main content

How can calibrated research-based models be improved for use as a tool in identifying genes controlling crop tolerance to environmental stresses in the era of genomics—from an experimentalist's perspective

An Erratum to this article was published on 01 December 2005

Abstract

Almost four decades have passed since the new field of ecosystem simulation sprang into full force as an added tool for a sound research in an ever-advancing scientific front. The enormous advances and new discoveries that recently took place in the field of molecular biology and basic genetics added more effective tools, have strengthened and increased the efficiency of science outputs in various areas, particularly in basic biological sciences. Now, we are entering into a more promising stage in science, i.e. ‘post-genomics’, where both simulation modelling and molecular biology tools are integral parts of experimental research in agricultural sciences. I briefly review the history of simulation of crop/environment systems in the light of advances in molecular biology, and most importantly the essential role of experimental research in developing and constructing more meaningful and effective models and technologies. Such anticipated technologies are expected to lead into better management of natural resources in relation to crop communities in particular and plant ecosystems in general, that might enhance productivity faster. Emphasis is placed on developing new technologies to improve agricultural productivity under stressful environments and to ensure sustainable economic development. The latter is essential since available natural resources, particularly land and water, are increasingly limiting.

This is a preview of subscription content, access via your institution.

References

  1. Adam, N.R., Wall, G.W., Kimball, B.A., Idso, S.B., Webber, A.N.: Photosynthetic down-regulation over long-term CO2 enrichment in leaves of sour orange (Citrus aurantium) trees. — New Phytol. 163: 341–347, 2004.

    Article  Google Scholar 

  2. Akano, A.O., Dixon, A.G.O., Mba, C., Barrera, E., Fregene, M.: Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. — Theor. appl. Genet. 105: 521–525, 2002.

    Article  PubMed  Google Scholar 

  3. Allen, R.G., Pereira, L.S., Raes, D., Smith, M.: Crop evapotranspiration — Guidelines for computing crop water requirements — FAO Irrigation and drainage paper 56. FAO, Rome 1998.

    Google Scholar 

  4. Alves, A.A.C., Setter, T.L.: Response of cassava to water deficit: leaf area growth and abscisic acid. — Crop Sci. 40: 131–137, 2000.

    Google Scholar 

  5. Alves, A.A.C., Setter, T.L.: Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. — Ann. Bot. 94: 605–613, 2004.

    Article  PubMed  Google Scholar 

  6. Amthor, J.S.: The McCree-deWit-Penning de Vries-Thornley respiration paradigms: 30 years later. — Ann. Bot. 86: 1–20, 2000.

    Article  Google Scholar 

  7. Aresta, R.B., Fukai, S.: Effects of solar radiation on growth of cassava (Manihot esculenta Crantz). II. Fiberous root length. — Field Crops Res. 9: 361–371, 1984.

    Article  Google Scholar 

  8. Baker, D.N., Lambert, J.R., McKinion, J.M.: GOSSYM: a simulator of cotton growth and yield. — South Carolina Agr. Exp. Stat. Tech. Bull. 1983.

  9. Baker, D.N., Musgrave, R.B.: Photosynthesis under field conditions. V. Further plant chamber studies of the effects of light on corn (Zea mays L.). — Crop Sci. 2: 127–131, 1964.

    Google Scholar 

  10. Baker, J.M.: Use and abuse of crop simulation models: foreword. — Agron. J. 88: 689, 1996.

    Google Scholar 

  11. Baker, N.R., Davies, W.J.: Control of Plant Growth. — Cambridge Univ. Press, Cambridge 1995.

    Google Scholar 

  12. Begonia, G.B., Begonia, M.F.T., Ousby, B.R., Johnson, M.: Vegetative and reproductive responses of cotton to state-specific CO2 enrichment and drought stress. — J. Mississippi Acad. Sci. 44: 190–196, 1999.

    Google Scholar 

  13. Begonia, G.B., Hesketh, J.D., Hodges, H.F.: Effects of long-term drought and nitrogen on fruiting and yield of cotton. — In: Nelson, T.C. (ed.): Proc. Beltwide Cotton Prod. Res. Conf. Pp. 71–75. Nat. Cotton Council of America, Memphis 1986a.

    Google Scholar 

  14. Begonia, G.B., Hesketh, J.D., Pettigrew, W.T., Peters, D.B.: Cotton leaf photosynthesis in enriched CO2. — In: Nelson, T.C. (ed.): Proc. Beltwide Cotton Prod. Res. Conf. Pp. 76–77. Nat. Cotton Council of America, Memphis 1986b.

    Google Scholar 

  15. Begonia, G.B., Hesketh, J.D., Woolley, J.T., Peters, D.B.: Variability in leaf photosynthetic CO2 exchange rates near saturating irradiance and CO2. — Photosynthetica 21: 584–587, 1987.

    Google Scholar 

  16. Begonia, G.B., Russ, B., Cunningham, S.G., Moore, R.: Evidence of not photosynthetic acclimation to cotton exposed to state-specific CO2 enrichment. — J. Mississippi Acad. Sci. 41: 95–98, 1996.

    Google Scholar 

  17. Behera, S.K, Nayak, L., Biswal, B.: Senescing leaves possess potential for stress adaptation: the developing leaves acclimated to high light exhibit increased tolerance to osmotic stress during senescence. — J. Plant Physiol. 160: 125–131, 2003.

    Article  PubMed  Google Scholar 

  18. Berry, J., Bjorkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.

    Article  Google Scholar 

  19. Boardman, N.K.: Comparative photosynthesis of sun and shade plants. — Annu. Rev. Plant Physiol. 28: 355–377, 1977.

    Article  Google Scholar 

  20. Bohm, W.: Methods of Studying Root Systems. — Springer-Verlag, Berlin 1979.

    Google Scholar 

  21. Boote, K.J., Jones, J.W., Mishoe, J.W., Berger, R.D.: Coupling pests to crop growth simulators to predict yield reduction. — Phytopathology 73: 1581–1587, 1983.

    Google Scholar 

  22. Boote, K.J., Jones, J.W., Pickering, N.B.: Potential uses and limitations of crop models. — Agron. J. 88: 704–716, 1996.

    Google Scholar 

  23. Boote, K.J., Loomis, R.S. (ed.): Modeling Crop Photosynthesis — from Biochemistry to Canopy. — Crop Science Society of America and American Society of Agronomy, Madison 1991.

    Google Scholar 

  24. Bowman, B.T., Brunke, R.R., Reynolds, W.G., Wall, G.J.: Rainfall simulator grid lysimeter system for solute transport studies using large intact soil blocks. — J. Environ. Quality 23: 815–822, 1994.

    Google Scholar 

  25. Bowman, B.T., Reynolds, W.D.: FAQ-Water Flow in Soils. — Southern Crop Protection and Food Res. Ctr., London 2003.

    Google Scholar 

  26. Brendel, B., Pan, X, Sparks, M.E.: Bioinformatics: The interpretation of genomic information. — In: Brummer, C., Wilson, R.F. (ed.): Legume Crop Genomics. Pp. 256–267. Amer. Oil Chem. Soc., Champaign 2004.

    Google Scholar 

  27. Bunce, J.A.: Measurements and modeling of photosynthesis in field crops. — CRC crit. Rev. Plant Sci. 4: 47–77, 1986.

    Google Scholar 

  28. Bunce, J.A., Sicher, R.C., Jr.: Daily irradiance and feedback inhibition of photosynthesis of elevated carbon dioxide in Brassica oleracea. — Photosynth. Res. 41: 481–488, 2004.

    Google Scholar 

  29. Buringh, P.: Food production potential of the world. — World Development 5: 477–485, 1977.

    Article  Google Scholar 

  30. Buxton, D.R., Shibles, R., Forsberg, R.A., Blad, B.L., Asay, K.H., Paulsen, G.M., Wilson, R.F. (ed.): International Crop Science I. — Crop Science Society of America, Madison 1993.

    Google Scholar 

  31. Cavero, J., Farre, I., Debaeke, P., Faci, J.M.: Simulation of maize yield under water stress with the EPICphase and CROPWAT models. — Agron. J. 92: 679–690, 2000.

    Google Scholar 

  32. Cayon, M.G., El-Sharkawy, M.A., Cadavid, L.F.: Leaf gas exchange of cassava as affected by quality of planting material and water stress. — Photosynthetica 34: 409–418, 1997.

    Article  Google Scholar 

  33. Chen, X.M., Alm, D.M., Hesketh, J.D.: Effects of atmospheric CO2 concentration on photosynthetic performance of C3 and C4 plants. — Biotronics 24: 65–72, 1995a.

    Google Scholar 

  34. Chen, X.M., Begonia, G.B., Alm, D.M., Hesketh, J.D.: Responses of soybean leaf photosynthesis to CO2 and drought. — Photosynthetica 29: 447–454, 1993.

    Google Scholar 

  35. Chen, X.M., Begonia, G.B., Hesketh, J.D.: Soybean stomatal acclimation to long-term exposure to CO2 enriched atmospheres. — Photosynthetica 31: 51–57, 1995b.

    Google Scholar 

  36. CIAT: Cassava Program Annual Report for 1990 (1992, 1993, 1994, 1995). — Centro Internacional de Agricultura Tropical, Cali 1990 (1992, 1993, 1994, 1995).

    Google Scholar 

  37. Cock, J.H., El-Sharkawy, M.A.: Physiological characteristics for cassava selection. — Exp. Agr. 24: 443–448, 1988.

    Google Scholar 

  38. Cock, J.H., Franklin, D., Sandoval, G., Juri, P.: The ideal cassava plant for maximum yield. — Crop Sci. 19: 271–279, 1979.

    Google Scholar 

  39. Cock, J.H., Porto, M.C.M., El-Sharkawy, M.A.: Water use efficiency of cassava. III. Influence of air humidity and water stress on gas exchange of field grown cassava. — Crop Sci. 25: 265–272, 1985.

    Google Scholar 

  40. Cock, J.H., Riano, N.M., El-Sharkawy, M.A., Lopez, Y., Bastidas, G.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). II. Initial products of 14CO2 fixation. — Photosynth. Res. 12: 237–241, 1987.

    Article  Google Scholar 

  41. Collins, G.B., Shepherd, R.J. (ed.): Engineering Plants for Commercial Products and Applications. — New York Academy of Sciences, New York 1996.

    Google Scholar 

  42. Connor, D.J., Cock, J.H.: Response of cassava to water shortage. II. Canopy dynamics. — Field Crops Res. 4: 285–296, 1981.

    Article  Google Scholar 

  43. Cowling, S.A., Field, C.B.: Environmental control of leaf area production: implications for vegetation and land-surface modeling. — Global Biogeochem. Cycles 17: doi:10.1029/2002GB001,915, 2003.

  44. Cuthbertson, D. (ed.): Assessment of and Factors Affecting Requirements of Farm Livestock. — Pergamon Press, Oxford 1969.

    Google Scholar 

  45. Davies, W.J., Metcalfe, J., Lodge, T.A., da Costa, A.R.: Plant growth substances and the regulation of growth under drought. — Aust. J. Plant Physiol. 13: 105–125, 1986.

    Google Scholar 

  46. de Tafur. S.M., El-Sharkawy, M.A., Cadavid, L.F.: Response of cassava (Manihot esculenta Crantz) to water stress and fertilization. — Photosynthetica 34: 233–239, 1997a.

    Article  Google Scholar 

  47. de Tafur, S. M., El-Sharkawy, M.A., Calle, F.: Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. — Photosynthetica 33: 229–257, 1997b.

    Google Scholar 

  48. Desai, P.: Weather and Grain Yields in the Soviet Union. — International Food Policy Research Institute, Washington 1986.

    Google Scholar 

  49. de Wit, C.T.: Photosynthesis of leaf canopies. — Agr. Res. Rep. (Pudoc-Wageningen) 663: 1–57, 1965.

    Google Scholar 

  50. Dickson, R.E., Tomlinson, P., Isbrands, J.G.: Partitioning of current photosynthate to different chemical fractions in leaves, stems, and roots of northern red oak seedlings during episode growth. — Can. J. Forest Res. 30: 1308–1317, 2000.

    Article  Google Scholar 

  51. Duncan, W.G.: SIMCOT: A simulation of cotton growth and yield. — In: Murphy, C., Hesketh, J.D., Strain, B. (ed.): Modelling the Growth of Trees. Pp. 115–118. Oak Ridge Nat. Lab., Oak Ridge 1973.

    Google Scholar 

  52. Duncan, W.G., Loomis, R.S., Williams, W.A., Hanau, R.: A model for simulating photosynthesis in plant communities. — Hilgardia 38: 181–205, 1967.

    Google Scholar 

  53. Edwards, G.E., Sheta, E., Moore, B. de, Dai, Z., Fransceschi, V.R., Cheng, S.-H., Lin, C.-H., Ku, M.S.B.: Photosynthetic characteristics of cassava (Manihot esculenta Crantz), a C3 species with chlorenchymatous bundle sheath cells. — Plant Cell Physiol. 31: 1199–1206, 1990.

    Google Scholar 

  54. El-Sharkawy, M.A.: Crop Research in Kufra Oasis, Libya. — Agric. Dev. Council, Tripoli 1975.

    Google Scholar 

  55. El-Sharkawy, M.A.: Effect of humidity and wind on leaf conductance of field grown cassava. — Rev. bras. Fisiol. veg. 2: 17–22, 1990.

    Google Scholar 

  56. El-Sharkawy, M.A.: Drought-tolerant cassava for Africa, Asia and Latin America: breeding projects work to stabilize productivity without increasing pressures on limited natural resources. — BioScience 43: 441–451, 1993.

    Google Scholar 

  57. El-Sharkawy, M.A.: Cassava biology and physiology. — Plant mol. Biol. 53: 241–261, 2003.

    Article  Google Scholar 

  58. El-Sharkawy, M.A.: Cassava biology and physiology. — Plant mol. Biol. 56: 481–501, 2004.

    Article  PubMed  Google Scholar 

  59. El-Sharkawy, M.A., Cadavid, L.F.: Genetic variation within cassava germplasm in response to potassium. — Exp. Agr. 36: 323–334, 2000.

    Article  Google Scholar 

  60. El-Sharkawy, M.A., Cadavid, L.F.: Response of cassava to prolonged water stress imposed at different stages of growth. — Exp. Agr. 38: 333–350, 2002.

    Article  Google Scholar 

  61. El-Sharkawy, M.A., Cadavid, L.F., de Tafur, S.M.: Nutrient use efficiency of cassava differs with genotype architecture. — Acta agron. Univ. Nacional-Palmira-Colombia 48: 23–32, 1998.

    Google Scholar 

  62. El-Sharkawy, M.A., Cock, J.H.: Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange. — Crop Sci. 24: 297–502, 1984.

    Google Scholar 

  63. El-Sharkawy, M.A, Cock, J.H.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). I. Gas exchange. — Photosynth. Res. 12: 219–235, 1987a.

    Article  Google Scholar 

  64. El-Sharkawy, M.A., Cock, J.H.: Response of cassava to water stress. — Plant Soil 100: 345–360, 1987b.

    Google Scholar 

  65. El-Sharkawy, M.A., Cock, J.H.: Photosynthesis of cassava (Manihot esculent). — Exp. Agr. 26: 325–340, 1990.

    Google Scholar 

  66. El-Sharkawy, M.A., Cock, J.H., Held, K.A.A.: Water use efficiency of cassava. II. Differing sensitivity of stomata to air humidity in cassava and other warm-climate species. — Crop Sci. 24: 503–507, 1984.

    Google Scholar 

  67. El-Sharkawy, M.A., Cock, J.H., Lynam, J.K., Hernandez, A. del P., Cadavid, L., F.L.: Relationships between biomass, rootyield and single-leaf photosynthesis in field-grown cassava. — Field Crops Res. 25: 183–201, 1990.

    Article  Google Scholar 

  68. El-Sharkawy, M.A., de Tafur, S.M., Cadavid, L.F.: Potential photosynthesis of cassava as affected by growth conditions. — Crop Sci. 32: 1336–1342, 1992a.

    Google Scholar 

  69. El-Sharkawy, M.A., de Tafur, S.M., Cadavid, L.F.: Photosynthesis of cassava and its relation to crop productivity. — Photosynthetica 28: 431–438, 1993.

    Google Scholar 

  70. El-Sharkawy, M.A., Hernandez, A. del P., Hershey, C.: Yield stability of cassava during prolonged mid-season water stress. — Exp. Agr. 28: 165–174, 1992b.

    Google Scholar 

  71. El-Sharkawy, M.A., Hesketh, J.D.: Effects of temperature and water deficit on leaf photosynthetic rates of different species. — Crop Sci. 4: 514–518, 1964.

    Google Scholar 

  72. El-Sharkawy, M., Hesketh, J.: Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances. — Crop Sci. 5: 517–521, 1965.

    Google Scholar 

  73. El-Sharkawy, M.A., Hesketh, J.D.: Citation Classic — Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances. — Curr. Cont./Agr. Biol. Environ. 27: 14, 1986.

    Google Scholar 

  74. El-Sharkawy, M., Hesketh, J., Muramoto, H.: Leaf photosynthetic rates and other growth characteristics among 26 species of Gossypium. — Crop Sci. 5: 173–175, 1965.

    Google Scholar 

  75. El-Sharkawy, M.A., Loomis, R.S., Williams, W.A.: Apparent reassimilation of respiratory carbon dioxide by different plant species. — Physiol. Plant. 20: 171–186, 1967.

    Google Scholar 

  76. El-Sharkawy, M.A., Loomis, R.S., Williams, W.A.: Photosynthetic and respiratory exchanges of carbon dioxide by leaves of the grain amaranth. — J. appl. Ecol. 5: 243–251, 1968.

    Google Scholar 

  77. Evans, L.T.: Crop Evolution, Adaptation and Yield. — Cambridge Univ. Press, Cambridge 1993.

    Google Scholar 

  78. Fernandez, M.D., Tezara, W., Rengifo, E., Herrera, A.: Lack of downregulation of photosynthesis in a tropical root crop, cassava, grown under an elevated CO2 concentration. — Funct. Plant Biol. 29: 805–814, 2002.

    Article  Google Scholar 

  79. Forrester, J.W.: Industrial Dynamics. — Massachusetts Inst. Technol. Press, Cambridge 1961.

    Google Scholar 

  80. Fregene, M., Okogbenin, E., Mba, C., Angel, F., Suarez, M.C., Guitierez, J., Chavarriaga, P., Roca, W., Bonierbale, M., Tohme, J.: Genome mapping in cassava improvement: challenges, achievements and opportunities. — Euphytica 120: 159–165, 2001.

    Article  Google Scholar 

  81. Fregene, M., Puonti-Kaerlas, J.: Cassava biotechnology. — In: Hillocks, R.J., Thresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 179–207. CABI Publishing, New York 2002.

    Google Scholar 

  82. Fukai, S., Alcoy, A.B., Llamelo, A.B., Patterson, R.D.: Effects of solar radiation on growth of cassava (Manihot esculenta Crantz): I. Canopy development and dry matter growth. — Field Crops Res. 9: 347–360, 1984.

    Article  Google Scholar 

  83. Fye, R.E., Reddy, V.R., Baker, D.N.: The validation of GOSSYM: Part 1-Arizona conditions. — Agri. Syst. 14: 85–105, 1984.

    Article  Google Scholar 

  84. Gaastra, P.: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. — Meded. Landbouwhogeschool (Wageningen) 59(13): 1–68, 1959.

    Google Scholar 

  85. Garfield, E.: The effectiveness of American Society of Agronomy Journals: A citationist's perspective. — In: Research Ethics, Manuscript Review and Journal Quality. Pp. 1–13. ACS Misc. Publ., ISI, Pennsylvania 1992.

    Google Scholar 

  86. Gray, V.M.: A comparison of two approaches for modelling cassava (Manihot esculenta Crantz) crop growth. — Ann. Bot. 85: 77–99, 2000.

    Article  Google Scholar 

  87. Hanks, R.J., Rasmussen, V.P.: Predicting crop production as related to plant water stress. — Adv. Agron. 35: 193–215, 1982.

    Google Scholar 

  88. Hatch, M.D.: C4 pathway photosynthesis: mechanism and physiological function. — Trends biochem. Sci. 2: 199–202, 1977.

    Google Scholar 

  89. Hatch, M.D., Slack, C.R.: Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. — Biochem. J. 101: 103–111, 1966.

    PubMed  Google Scholar 

  90. Hawksworth, D.L. (ed.): Advancing Agricultural Production in Africa. — Commonwealth Agricultural Bureaux, Farnham Royal 1984.

    Google Scholar 

  91. Hermans, J., Westhoff, P.: Analysis of expression and evolutionary relationships of phosphoenolpyruvate carboxylase genes in Falveria trinervia (C4) and F. pringlei (C3). — Mol. gen. Genet. 224: 459–468, 1990.

    Article  PubMed  Google Scholar 

  92. Hershey, C.H., Jennings, D.L.: Progress in breeding cassava for adaptation to stress. — Plant Breed. Abstr. 62: 823–831, 1992.

    Google Scholar 

  93. Hesketh, J.D., Woolley, J.T., Peters, D.B.: Leaf photosynthetic CO2 exchange rates in light and CO2 enchange rates in light and CO2 enriched environments. — Photosynthetica 18: 536–540, 1984.

    Google Scholar 

  94. Hileman, D.R., Huluka, G., Kenjigel, P.K., Sinha, N., Bhattacharya, N.C., Biswas, P.K., Lewin, K.F., Nagy, J., Hendrey, G.R.: Canopy photosynthesis and transpiration of field-grown cotton exposed to free-air CO2 enrichment (FACE) and differential irrigation. — Agr. Forest Meteorol. 70: 189–207, 1994.

    Article  Google Scholar 

  95. Hodges, T. (ed.): Predicting Crop Phenology — CRC Press, Boca Raton 1991.

    Google Scholar 

  96. Hoogenboom, G., Jones, J.W., Boote, K.J.: Modeling the growth, development and yield of grain yields using SOYGRO, PNUTGRO and BEANGRO: a review. — Trans. ASAE 35: 2043–2056, 1992.

    Google Scholar 

  97. Ingram, J., Sutton, K., Hunt, T.: GCTW Working Document 24, GCTW Focus 3 Cassava Network. Symposium Abstracts: Food and Forestry — Global Change and Global Challenges. The GCTE Focus 3 Conference 1999.

  98. Irikura, Y., Cock, J.H., Kawano, K.: The physiological basis of genotype-temperature interactions in cassava. — Field Crops Res. 2: 227–239, 1979.

    Article  Google Scholar 

  99. Jones, J.W., Hesketh, J.D., Kamprath, E.J., Bowen, H.D.: Development of a nitrogen balance for cotton growth models. — Crop Sci. 14: 541–546, 1974.

    Google Scholar 

  100. Kasperbauer, M.J.: Cotton seedling root growth responses to light reflected to the shoots from straw-covered versus bare soil. — Crop Sci. 39: 164–167, 1999.

    Google Scholar 

  101. Kasperbauer, M.J., Hunt, P.G.: Far-red light affects photosynthate allocation and yield of tomato over red mulch. — Crop Sci. 38: 970–974, 1998.

    Google Scholar 

  102. Kasperbauer, M.J., Karlen, D.L.: Light-mediated bioregulation of tillering and photosynthate partitioning in wheat. — Physiol. Plant. 66: 159–163, 1986.

    Google Scholar 

  103. Kawano, K., Daza, P., Amaya, A. Rios, M., Goncalves, W.M.F.: Evaluation of cassava germplasm for productivity. — Crop Sci. 18: 377–380, 1978.

    Google Scholar 

  104. Kawano, K., Narintaraporn, K., Narintaraporn, P., Sarakarn, S., Limsila, A., Limsila, J., Suparhan, D., Sarawat, V., Watananonta, W.: Yield improvement in a multistage breeding program for cassava. — Crop Sci. 38: 325–332, 1998.

    Google Scholar 

  105. Keating, B.A., Evenson, J.B., Fukai, S.: Environmental effects on growth and development of cassava (Manihot esculenta Crantz). I. Crop development. — Field Crops Res. 5: 271–281, 1982.

    Article  Google Scholar 

  106. Kortchak, H.P., Hart, C.K., Burr, G.O.: Carbon dioxide fixation in sugarcane leaves. — Plant Physiol. 40: 209–213, 1965.

    Google Scholar 

  107. Kreeb, K.H., Richter, H., Hinckley, T.M. (ed.): Structural and Functional Responses to Environmental Stresses: Water Shortage. — SPB Academic Publ., The Hague 1989.

    Google Scholar 

  108. Kutacek, M., Elliott, M.C., Machackova, I. (ed.): Molecular Aspects of Hormonal Regulation of Plant Development. — SPB Academic Publ., The Hague 1990.

    Google Scholar 

  109. Laetsch, W.M.: The C4 syndrome: a structural analysis. — Annu. Rev. Plant Physiol. 25: 27–52, 1974.

    Article  Google Scholar 

  110. Loomis, R.S., Rabbinge, R., Ng, E.: Explanatory models in crop physiology. — Annu. Rev. Plant Physiol. 30: 339–367, 1979.

    Article  Google Scholar 

  111. Lopez, Y., Velez, W., El-Sharkawy, M., Mayer, J.E.: Biochemical characterization of PEPC from cassava: a preliminary report. — In: Roca, W.M., Thro, A.M. (ed.): Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. Pp. 340–343. Centro Internacional de Agricultura Tropical, Cali 1993.

    Google Scholar 

  112. MacDermitt, D.K., Loomis, R.S.: Elemental composition of biomass and its relation to energy content, growth efficiency, and growth yield. — Ann. Bot. 48: 275–290, 1981.

    Google Scholar 

  113. Mathews, R.B.: Modelling phosphorus dynamics of cassava-based agroforestry systems — Final report, R6348 sub-contract. Sisloe, Bedfordshire, MD45 4DT UK, 1998.

  114. Mathews, R.B., Hunt, L.A.: GUMCAS: a model describing the growth of cassava (Manihot esculenta Crantz). — Field Crops Res. 36: 69–84, 1994.

    Article  Google Scholar 

  115. McCree, K.J.: Equations for the rate of dark respiration of white clover and grain sorghum, as functions of dry weight, photosynthetic rate, and temperature. — Crop Sci. 14: 509–514, 1974.

    Google Scholar 

  116. McKinion, J.M., Baker, D.N., Hesketh, J.D., Jones, J.W.: SIMCOT II: A simulation of cotton growth and yield. — In: Computer Simulation of a Cotton Production System. Users Manual. Pp. 27–82. Agr. Res. Serv., US Dep. Agr. 1975.

  117. McKinion, J.M., Baker, D.N., Whisler, F.D., Lambert, J.R.: Application of GOSSYM/COMAX system to cotton crop management. — Agr. Syst. 31: 55–65, 1989.

    Article  Google Scholar 

  118. Mishoe, J.W., Jones, J.W., Swaney, D.P., Wilkerson, G.G.: Using crop and pest models for management applications. — Agr. Syst. 15: 153–170, 1984.

    Article  Google Scholar 

  119. Monsi, M., Saeki, T.: Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion. — Jap. J. Bot. 14: 22–52, 1953.

    Google Scholar 

  120. Monteith, J.L.: The quest for balance in crop modeling. — Agron. J. 88: 695–697, 1996.

    Google Scholar 

  121. Muramoto, H., Hesketh, J., El-Sharkawy, M.: Relationships among rate of leaf area development, photosynthetic rate, and rate of dry matter production among American cultivated cottons and other species. — Crop Sci. 5: 163–166, 1965.

    Google Scholar 

  122. Neales, T.F., Incoll, L.D.: The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: a review of the hypothesis. — Bot. Rev. 34: 107–125, 1968.

    Google Scholar 

  123. Ng, E., Loomis, R.S.: Simulation of Growth and Yield of the Potato Crop. — PUDOC, Wageningen 1984.

    Google Scholar 

  124. Nickel, J.L.: Low-input, environmentally sensitive technology for agriculture. Grant F. Walton International Lecture presented at Rutgers, The State University of New Jersey. 16 October 1984. — Centro Internacional de Agricultura Tropical, Cali 1987.

    Google Scholar 

  125. Nickel, J.L.: Research Management for Development — Open Letter to a New Agricultural Research Director. — Inter-American Institute for Cooperation on Agriculture, San Jose 1989.

    Google Scholar 

  126. Okogbenin, E., Fregene, M.: Genetic analysis and QTL mapping of early root bulking in and F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). — Theor. appl. Genet. 106: 58–66, 2002.

    PubMed  Google Scholar 

  127. Osaki, M., Shinano, T., Yamada, M., Yamada, S.: Function of node unit in photosynthate distribution to root in higher plants. — Photosynthetica 42: 123–131, 2004.

    Article  Google Scholar 

  128. Pan, X.: Modeling Degree Day Effects on Plant Leaf and Internode Phenological Events. — MS Thesis. Univ. Illinois, Urbana-Champaign 1997.

    Google Scholar 

  129. Pan, X.: A Phenological Study of Pioneer hybrids. — Ph.D. Thesis. Univ. Illinois, Urbana-Champaign 2000.

    Google Scholar 

  130. Pan, X., Hesketh, J.D., Huck, M.G.: OWSimu: An Objectoriented and Web-based Simulator for Plant Growth. — Agr. Syst. 63: 33–47, 2000.

    Article  Google Scholar 

  131. Passioura, J.B.: Simulation models: science, snake oil, education or engineering? — Agron. J. 88: 690–694, 1996.

    Google Scholar 

  132. Peart, R.M., Curry, D.B. (ed.): Agricultural System Modeling and Simulation. — Marcel Dekker, Washington 1997.

    Google Scholar 

  133. Pellet, D., El-Sharkawy, M.A.: Cassava varietal response to phosphorus fertilization. 1. Yield, biomass and gas exchange. — Field Crops Res. 35: 1–11, 1993a.

    Article  Google Scholar 

  134. Pellet, D., El-Sharkawy, M.A.: Cassava varietal response to phosphorus fertilization. II. Phosphorus uptake and use efficiency. — Field Crops Res. 35: 13–20, 1993b.

    Article  Google Scholar 

  135. Pellet, D., El-Sharkawy, M.A.: Sink source relations in cassava: effects of reciprocal grafting on yield and leaf photosynthesis. — Exp. Agr. 30: 359–367, 1994.

    Google Scholar 

  136. Pellet, D., El-Sharkawy, M.A.: Cassava varietal response to fertilization: growth dynamics and its implications for cropping sustainability. — Exp. Agr. 33: 353–365, 1997.

    Article  Google Scholar 

  137. Penning de Vries, F.W.T.: The cost of maintenance processes in plant cells. — Ann. Bot. 39: 77–92, 1975.

    Google Scholar 

  138. Penning de Vries, F.W.T., Brunsting, A.B., van Laar, H.H.: Products, requirements and efficiency of biological synthesis, a quantitative approach. — J. theor. Biol. 45: 339–377, 1974.

    Article  PubMed  Google Scholar 

  139. Penning de Vries, F.W.T., Jansen, D.M., ten Berge, H.F.M., Bakema, A.: Simulation of Ecophysiological Processes of Growth in Several Annual Crops. — PUDOC, Wageningen 1989.

    Google Scholar 

  140. Pettigrew, W.T.: Moisture deficit effects on cotton lint yield, yield components, and boll distribution. — Agron. J. 96: 377–383, 2004a.

    Google Scholar 

  141. Pettigrew, W.T.: Physiological consequences of moisture deficit stress in cotton. — Crop Sci. 44: 1265–1272, 2004b.

    Google Scholar 

  142. Poluektov, R.A., Topaj, A.G.: Crop modeling: nostalgia about present or reminiscence about future. — Agron. J. 93: 653–659, 2001.

    Google Scholar 

  143. Portis, A.R., Jr., Salvucci, M.E.: The discovery of Rubisco activase — yet another story of serendipity. — Photosynth. Res. 73: 257–264, 2002.

    Article  PubMed  Google Scholar 

  144. Porto, M.C.M.: Physiological Mechanisms of Drought Tolerance in Cassava (Manihot esculenta Crantz). — Ph.D. Thesis. University of Arizona, Tucson 1983.

    Google Scholar 

  145. Radin, J.W., Kimball, B.A., Hendrix, D.L., Mauney, J.R.: Photosynthesis of cotton plants exposed to elevated levels of carbon dioxide in the field. — Photosynth. Res. 12: 191–203, 1987.

    Article  Google Scholar 

  146. Raghavendra, A.S., Sane, P.V., Mohanty. P.: Photosynthesis research in India: transition from yield physiology into molecular biology. — Photosynth. Res. 76: 435–450, 2003.

    Article  PubMed  Google Scholar 

  147. Ramanujam, T.: Effect of moisture stress on photosynthesis and productivity of cassava. — Photosynthetica 24: 217–224, 1990.

    Google Scholar 

  148. Reddy, K.R., Hodges, H.F., McKinion, J.M.: Modeling temperature effects on cotton internode and leaf growth. — Crop Sci. 37: 503–509, 1997.

    Google Scholar 

  149. Ritchie, J.T.: A user-oriented model of the soil water balance in wheat. — In: Day, W., Atkin, R.K. (ed.): Wheat Growth and Modeling. Pp. 293–305. Plenum Press, New York 1985.

    Google Scholar 

  150. Ritchie, J.T., Godwin, D.C., Otter-Nacke, S.J.: CERES-Wheat: A User-Oriented Wheat Yield Model. Preliminary Document. — Michigan State Univ., West Lansing 1985a.

    Google Scholar 

  151. Ritchie, J.T., Godwin, D.C., Otter-Nacke, S.J.: CERES-Wheat: A User-Oriented Wheat Yield Model. Preliminary Document. — Michigan State Univ., East Lansing 1985b.

    Google Scholar 

  152. Ritchie, J.T., Johnson, B.S.: Soil and plant factors affecting evaporation. — In: Stewart, B.A., Nielsen, D.R. (ed.): Irrigation of Agricultural Crops. Pp. 363–390. ASA-CSSA-SSSA, Madison 1990.

    Google Scholar 

  153. Rogers, A., Fischer, B.U., Bryant, J., Frehner, M., Blum, H., Raines, C.A., Long, S.P.: Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. — Plant Physiol. 118: 683–689, 1998.

    Article  PubMed  Google Scholar 

  154. Rohrig, M., Stutzel, H., Alt, C.: A three-dimensional approach to modeling light interception in heterogeneous canopies. — Agron. J. 91: 1024–1032, 1999.

    Google Scholar 

  155. Russel, G., Marshall, B., Jarvis, P.G. (ed.): Plant Canopies: Their Growth, Form and Function. — Cambridge Univ. Press, Cambridge — New York — Port Chester — Melbourne — Sydney 1989.

    Google Scholar 

  156. Saeki, T.: Interrelationships between leaf amount, light distribution and leaf photosynthesis in a community. — Bot. Mag. 73: 5–63, 1960.

    Google Scholar 

  157. Salem, J.: In an interview with Lord Robert May of the UK. — Discover 25 (Nov.): 23–24, 2004.

  158. Sasson, A.: Feeding Tomorrow's World. — United Nations Educational, Scientific and Cultural Organization (UNESCO)/ CTA, Paris 1990.

    Google Scholar 

  159. Sestak, Z. (ed.): Photosynthesis During Leaf Development. — Academia, Praha; Dr W. Junk Publ., Dordrecht — Boston — Lancaster 1985.

    Google Scholar 

  160. Sestak, Z., Catsky, J., Jarvis, P.G. (ed.): Plant Photosynthetic Production. Manual of Methods. — Dr W. Junk Publ., The Hague 1971.

    Google Scholar 

  161. Sharma-Natu, P., Pandurangam, V., Ghildiyal, M.C.: Photosynthetic acclimation and productivity of mungbean cultivars under elevated CO2 concentration. — J. Agron. Crop Sci. 190: 81–85, 2004.

    Article  Google Scholar 

  162. Sholtis, J.D., Gunderson, C.A., Norby, R.J., Tissue, D.T.: Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidamber styraciflua) forest stand. — New Phytol. 162: 343–354, 2004.

    Article  Google Scholar 

  163. Shorter, R., Lawn, R.J., Hammer, G.L.: Improving genotypic adaptation in crops — a role for breeders, physiologists and modellers. — Exp. Agr. 27: 155–175, 1991.

    Google Scholar 

  164. Sinclair, T.R., Seligman, N.G.: Crop modeling: from infancy to maturity. — Agron. J. 88: 698–704, 1996.

    Google Scholar 

  165. Singh, P.: Data needs for soil water balance simulation. — In: Wani, S.P., Singh, P., Pathak, P. (ed.): Methods and Management of Data for Watershed Research. Pp. 49–54. ICRISAT, Patancheru 1999.

    Google Scholar 

  166. Swaney, D.P., Mishoe, J.W., Jones, J.W., Boggess, W.G.: Using crop models for management: Impact of weather characteristics on irrigation decisions in soybeans. — Trans. ASAE 26: 1808–1814, 1983.

    Google Scholar 

  167. Tenjo, F.A., Mayer, J.E., El-Sharkawy, M.: Cloning and sequence analysis of PEP-carboxylase from cassava. — In: Roca, W.M., Thro, A.M. (ed.): Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. Pp. 331–334. Centro Internacional de Agricultura Tropical, Cali 1993.

    Google Scholar 

  168. Thornley, J.H.M.: Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. — Ann. Bot. 81: 421–430, 1998.

    Article  Google Scholar 

  169. Thornley, J.H.M.: Instantaneous canopy photosynthesis: analytical expressions for sun and shade leaves based on exponential light decay down the canopy and acclimated non-rectangular hyperbola for leaf photosynthesis. — Ann. Bot. 89: 451–458, 2002.

    Article  PubMed  Google Scholar 

  170. Thornley, J.H.M.: Acclimation of photosynthesis to light and canopy nitrogen distribution: an interpretation. — Ann. Bot. 93: 473–475, 2004.

    Article  PubMed  Google Scholar 

  171. Thornley, J.H.M., Johnson, I.R.: Plant and Crop Modelling: A Mathematical Approach to Plant and Crop Physiology. — Oxford Sci. Publ., Clarendon Press, Oxford 1990.

    Google Scholar 

  172. Tscherning, K., Leihner, D.E., Hilger, T.H., Muller-Samann, K.M., El-Sharkawy, M.A.: Grass barriers in cassava hillside cultivation: rooting patterns and root growth dynamics. — Field Crops Res. 43: 131–140, 1995.

    Article  Google Scholar 

  173. Ueno, O., Agarie, S.: The intercellular distribution of glycine decarboxylase in leaves of cassava in relation to the photosynthetic mode and leaf anatomy. — Jap. J. Crop Sci. 66: 268–278, 1997.

    Google Scholar 

  174. Veltkamp, H.J.: Physiological causes of yield variation in cassava (Manihot esculenta Crantz). — Agricultural University Wageningen Papers 85–6. Wagningen 1985.

  175. Wang, J., Hesketh, J.D., Woolley, J.T.: Preexisting channels and soybean rooting patterns. — Soil Sci. 141: 432–437, 1986.

    Google Scholar 

  176. Ware, D.H., Jaiswal, P., Ni, J., Yap, I.V., Pan, X., Clark, K.Y., Teytelman, L., Schmidt, S.C., Zhao, W., Chang, K., Cartinhour, S., Stein, L.D., McCouch, S.R.: Gramene: a tool for grass genomics. — Plant Physiol. 130: 1606–1613, 2002.

    Article  PubMed  Google Scholar 

  177. Watson, D.J.: Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. — Ann. Bot. 41: 41–76, 1947.

    Google Scholar 

  178. Watson, D.J.: The physiological basis of variation in yield. — Adv. Agron. 4: 101–145, 1952.

    Google Scholar 

  179. Whisler, F.D., Acock, B., Baker, D.N., Fye, R.E., Hodges, H.F., Lambert, J.R., Lemmon, H.E., McKinion, J.M., Reddy, V.R.: Crop simulation models in agronomic systems. — Adv. Agron. 40: 141–208, 1986.

    Google Scholar 

  180. White, J.W., Hoogenboom, G.: Simulating effects of genes for physiological traits in a process-oriented crop model.-Agron. J. 88: 416–422, 1996.

    Google Scholar 

  181. White, J.W., Hoogenboom, G., Jones, J.W., Boote, K.J.: Evaluation of dry bean model BEANGRO V 1.01 for crop production research in a tropical environment. — Exp. Agr. 31: 241–254, 1995.

    Google Scholar 

  182. Wortman, S., Cummings, R.W., Jr.: To Feed This World: The Challenge and the Strategy. — Johns Hopkins University Press, Baltimore 1978.

    Google Scholar 

  183. Xu, D.Q., Gifford, R.M., Chow, W.S.: Photosynthetic acclimation in pea and soybean to high atmospheric CO2 partial pressure. — Plant Physiol. 106: 661–671, 1994.

    Article  PubMed  Google Scholar 

  184. Zhang, L.X., Qi, W., Su, L., Whisler, F.: Deltasoy — an internet based database system for soybean research and production. — Agron. J. 94: 1163–1171, 2002.

    Google Scholar 

  185. Zhang, L.X., Wang, R.F., Hesketh, J.D.: Effects of photoperiod on growth and development of soybean floral bud in different maturity. — Agron. J. 93: 944–948, 2001.

    Google Scholar 

  186. Ziska, L.H., Hogan, K.P., Smith, A.P., Drake, B.G.: Growth and photosynthesis response of nine tropical species with longterm exposure to elevated carbon dioxide. — Oecologia 86: 383–389, 1991.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11099-005-0097-8.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Sharkawy, M.A. How can calibrated research-based models be improved for use as a tool in identifying genes controlling crop tolerance to environmental stresses in the era of genomics—from an experimentalist's perspective. Photosynthetica 43, 161–176 (2005). https://doi.org/10.1007/s11099-005-0030-1

Download citation

Additional key words

  • acclimation
  • adaptation
  • cassava
  • climate
  • CO2; evapotranspiration
  • genomics
  • leaves
  • photosynthesis
  • productivity
  • respiration
  • soil
  • water
  • yield