Algebraic structuralism

Article
  • 7 Downloads

Abstract

This essay is about how the notion of “structure” in ontic structuralism might be made precise. More specifically, my aim is to make precise the idea that the structure of the world is (somehow) given by the relations inhering in the world, in such a way that the relations are ontologically prior to their relata. The central claim is the following: one can do so by giving due attention to the relationships that hold between those relations, by making use of certain notions from algebraic logic.

Keywords

Structuralism Cylindric algebras Metaphysics 

References

  1. Baez, J. C., & Muniain, J. P. (1994). Gauge fields, knots, and gravity. Singapore: World Scientific.CrossRefGoogle Scholar
  2. Burgess, J. P. (1983). Why I am not a nominalist. Notre Dame Journal of Formal Logic, 24(1), 93–105.CrossRefGoogle Scholar
  3. Chakravartty, A. (1998). Semirealism. Studies in History and Philosophy of Science Part A, 29(3), 391–408.CrossRefGoogle Scholar
  4. Dasgupta, S. (2009). Individuals: An essay in revisionary metaphysics. Philosophical Studies, 145(1), 35–67.CrossRefGoogle Scholar
  5. Dasgupta, S. (2011). The bare necessities. Philosophical Perspectives, 25(1), 115–160.CrossRefGoogle Scholar
  6. Esfeld, M., & Lam, V. (2010). Holism and structural realism. In R. Vanderbeeken & B. D’Hooghe (Eds.), Worldviews, science and US. Studies of analytical metaphysics. A selection of topics from a methodological perspective (pp. 10–31). Singapore: World Scientific.Google Scholar
  7. French, S. (2006). Structure as a weapon of the realist. Proceedings of the Aristotelian Society, 106(1), 169–187.Google Scholar
  8. French, S. (2011). Metaphysical underdetermination: Why worry? Synthese, 180(2), 205–221.CrossRefGoogle Scholar
  9. French, S., & Ladyman, J. (2003). Remodelling structural realism: Quantum physics and the metaphysics of structure. Synthese, 136(1), 31–56.CrossRefGoogle Scholar
  10. French, S., & Ladyman, J. (2010). In defence of ontic structural realism. In A. Bokulich & P. Bokulich (Eds.), Scientific structuralism (pp. 25–42). Dordrecht: Springer.CrossRefGoogle Scholar
  11. Frigg, R., & Votsis, I. (2011). Everything you always wanted to know about structural realism but were afraid to ask. European Journal for Philosophy of Science, 1(2), 227–276.CrossRefGoogle Scholar
  12. Galler, B. A. (1957). Cylindric and polyadic algebras. Proceedings of the American Mathematical Society, 8(1), 176–183.CrossRefGoogle Scholar
  13. Greaves, H. (2011). In search of (spacetime) structuralism. Philosophical Perspectives, 25(1), 189–204.CrossRefGoogle Scholar
  14. Halmos, P. R. (1954). Polyadic boolean algebras. Proceedings of the National Academy of Sciences of the United States of America, 40(5), 296–301.CrossRefGoogle Scholar
  15. Halmos, P. R. (1962). Algebraic logic. Hartford: Chelsea Publishing Company.Google Scholar
  16. Halmos, P. R. (2000). An autobiography of polyadic algebras. Logic Journal of IGPL, 8(4), 383–392.CrossRefGoogle Scholar
  17. Halvorson, H. (2012). What scientific theories could not be. Philosophy of Science, 79(2), 183–206.CrossRefGoogle Scholar
  18. Hawthorne, J. (2001). Causal structuralism. Noûs, 35, 361–378.CrossRefGoogle Scholar
  19. Henkin, L., Monk, J. D., & Tarski, A. (1971). Cylindric algebras: Part I. Amsterdam: North-Holland.Google Scholar
  20. Henkin, L., Monk, J. D., & Tarski, A. (1985). Cylindric algebras: Part II. Amsterdam: North-Holland.Google Scholar
  21. Henkin, L., Monk, J. D., & Tarski, A. (1986). Representable cylindric algebras. Annals of Pure and Applied Logic, 31, 23–60.CrossRefGoogle Scholar
  22. Kaplan, D. (1975). How to Russell a Frege-Church. The Journal of Philosophy, 72(19), 716–729.CrossRefGoogle Scholar
  23. Ladyman, J. (1998). What is structural realism? Studies in History and Philosophy of Science Part A, 29(3), 409–424.CrossRefGoogle Scholar
  24. Lam, V., & Wüthrich, C. (2015). No categorial support for radical ontic structural realism. The British Journal for the Philosophy of Science, 66(3), 605–634.CrossRefGoogle Scholar
  25. Landsman, K. (2017). Foundations of quantum theory. Cham: Springer.CrossRefGoogle Scholar
  26. Leitgeb, H., & Ladyman, J. (2008). Criteria of identity and structuralist ontology. Philosophia Mathematica, 16(3), 388–396.CrossRefGoogle Scholar
  27. McKenzie, K. (2014a). On the fundamentality of symmetries. Philosophy of Science, 81(5), 1090–1102.CrossRefGoogle Scholar
  28. McKenzie, K. (2014b). Priority and particle physics: Ontic structural realism as a fundamentality thesis. The British Journal for the Philosophy of Science, 65(2), 353–380.CrossRefGoogle Scholar
  29. McSweeney, M. M. (2016). An epistemic account of metaphysical equivalence. Philosophical Perspectives, 30(1), 270–293.CrossRefGoogle Scholar
  30. Melia, J. (1999). Holes, haecceitism and two conceptions of determinism. The British Journal for the Philosophy of Science, 50(4), 639–664.CrossRefGoogle Scholar
  31. Monk, J. D. (1969). Nonfinitizability of classes of representable cylindric algebras. The Journal of Symbolic Logic, 34(03), 331–343.CrossRefGoogle Scholar
  32. Monk, J. D. (2000). An introduction to cylindric set algebras. Logic Journal of IGPL, 8(4), 451–496.CrossRefGoogle Scholar
  33. Németi, I. (1991). Algebraization of quantifier logics, an introductory overview. Studia Logica, 50(3–4), 485–569.CrossRefGoogle Scholar
  34. Plotkin, B. (2000). Algebra, categories and databases. In M. Hazewinkel (Ed.), Handbook of algebra (Vol. 2, pp. 79–148). Amsterdam: Elsevier.Google Scholar
  35. Pooley, O. (2006). Points, particles, and structural realism. In D. Rickles, S. French, & J. Saatsi (Eds.), The structural foundations of quantum gravity (pp. 83–120). Oxford: Oxford University Press.CrossRefGoogle Scholar
  36. Psillos, S. (2001). Is structural realism possible? Philosophy of Science, 68(3), S13–S24.CrossRefGoogle Scholar
  37. Rayo, A. (2017). The world is the totality of facts, not of things. Philosophical Issues, 27(1), 250–278.CrossRefGoogle Scholar
  38. Roberts, B. W. (2011). Group structural realism. The British Journal for the Philosophy of Science, 62(1), 47–69.CrossRefGoogle Scholar
  39. Roberts, J. T. (2008). A puzzle about laws, symmetries and measurability. The British Journal for the Philosophy of Science, 59(2), 143–168.CrossRefGoogle Scholar
  40. Rosenstock, S., Barrett, T. W., & Weatherall, J. O. (2015). On Einstein algebras and relativistic spacetimes. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 52(Part B), 309–316.CrossRefGoogle Scholar
  41. Ruetsche, L. (2011). Interpreting quantum theories: The art of the possible. Oxford: Oxford University Press.CrossRefGoogle Scholar
  42. Rynasiewicz, R. (1992). Rings, holes and substantivalism: On the program of Leibniz algebras. Philosophy of Science, 59(4), 572–589.CrossRefGoogle Scholar
  43. Schaffer, J. (2005). Quiddistic knowledge. Philosophical Studies, 123(1–2), 1–32.CrossRefGoogle Scholar
  44. Sider, T. (2017). The tools of metaphysics and the metaphysics of science (Unpublished manuscript).Google Scholar
  45. Turner, J. (2016). The facts in logical space: A tractarian ontology. Oxford: Oxford University Press.CrossRefGoogle Scholar
  46. Weatherall, J. O. (2016). Regarding the ‘hole argument’. The British Journal for the Philosophy of Science.  https://doi.org/10.1093/bjps/axw012.Google Scholar
  47. Wolff, J. (2012). Do objects depend on structures? The British Journal for the Philosophy of Science, 63(3), 607–625.CrossRefGoogle Scholar
  48. Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43(1–2), 99–124.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyLudwig Maximilian University of MunichMunichGermany

Personalised recommendations