Skip to main content

Character and theory of mind: an integrative approach

Abstract

Traditionally, theories of mindreading have focused on the representation of beliefs and desires. However, decades of social psychology and social neuroscience have shown that, in addition to reasoning about beliefs and desires, human beings also use representations of character traits to predict and interpret behavior. While a few recent accounts have attempted to accommodate these findings, they have not succeeded in explaining the relation between trait attribution and belief-desire reasoning. On my account, character-trait attribution is part of a hierarchical system for action prediction, and serves to inform hypotheses about agents’ beliefs and desires, which are in turn used to predict and interpret behavior.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    John Doris offers a similar, though not identical, analysis of character traits. According to his view, “global” traits have two primary features:

    1. 1.

      Consistency Character and personality traits are reliably manifested in trait-relevant behavior across a diversity of trait-relevant eliciting conditions that may vary widely in their conduciveness to the manifestations of the trait in question.

    2. 2.

      Stability Character and personality traits are reliably manifested in trait-relevant behavior over iterated trials of similar trait-relevant eliciting conditions. (Doris 2002, p. 22)

    Doris also mentions a third feature of character traits, evaluative integration, which is not relevant for our current purposes.

  2. 2.

    There are also cross-cultural differences in the extent to which individuals fall prey to the correspondence bias. While the correspondence bias is present to some extent across cultures (Choi et al. 1999; Krull et al. 1999; Norenzayan et al. 2003), it appears that members of "individualist" societies are particularly susceptible to it; meanwhile, members of "collectivist" societies seem to pay more attention to situational factors and the presence of social constraints (Choi and Nisbett 1998; Miyamoto and Kitayama 2002). This is consistent with the broad finding that members of collectivist cultures display a habitual tendency to attend to situational factors and contexts (Kitayama et al. 2003). These habitual patterns of attention seem to make members of "collectivist" cultures better able to correct their initial dispositionalist attributions.

  3. 3.

    Beliefs about one’s own character traits could figure in practical reasoning. But this observation is of little help to the simulation-theorist: surely, this kind of self-reflection is uncommon in the first-person case, and it would be bizarre if we nevertheless believed that other people frequently engage in it. Moreover, beliefs about one’s character seem like they would have a very different effect on behavior than character itself. If I reflect on my own impulsivity, for instance it will probably lead me to be less impulsive.

  4. 4.

    System 1 strategies are “fast, relatively effortless routines that occur without our awareness,” while System 2 strategies are “slow routines which require the expenditure of mental effort and are subject to consciousness and deliberative control” (Fiebich and Coltheart 2015, p. 238).

  5. 5.

    Fiebich and Coltheart distinguish between non-linguistic trait attributions and linguistic trait attributions. Non-linguistic trait attributions occur when an agent does not possess a linguistic concept of a trait (i.e. the word ‘generosity’). These only consist in associations between particular behaviors, situations, and agents, and would only allow for predicting similar behaviors in similar situations. Linguistic trait attributions, in contrast, involve the possession of a linguistic concept of a trait, and would facilitate a whole network of predictions.

    I am skeptical of this distinction for two reasons. First, non-linguistic trait attribution, on this account, does not seem to involve trait-based reasoning at all: traits are supposed to be enduring, internal properties of individuals, but these non-linguistic trait attributions seem to consist only in superficial behavioral associations. Second, this distinction implicitly assumes that the only way to possess a concept of a trait is through language. But there is ample reason to think that even pre-linguistic or non-linguistic entities can possess concepts (e.g. Call and Tomasello 2008; Carey 2009). While linguistic concepts undoubtedly enrich and expand our trait attribution abilities, there is no reason to think that non-linguistic trait attribution is as impoverished as Fiebich and Coltheart (2015) make it out to be.

  6. 6.

    There is considerable variation amongst the different versions of predictive coding. Some theorists have taken the extreme position that prediction error signals are the only information carried via bottom-up input systems (Clark 2015; Friston and Kiebel 2009; Hohwy 2013), while others allow that traditional bottom-up information-processing compliments top-down prediction (Bar 2007; Spratling 2016). On my account, trait information (e.g. via facial features) is sometimes initially processed in a bottom-up fashion; as such, I disavow the idea that bottom-up input systems only carry prediction errors.

  7. 7.

    For example, the explanatory status of the Bayesian aspect of these models is a vexed question. Some theorists are explicit that the Bayesian formalism is intended to capture only the computational level of description, abstracted away from implementational, mechanistic details (Chater et al. 2006), while others seem to be making claims about the actual algorithms that support predictive processes (Friston and Kiebel 2009). While some have charged that ultimately, Bayesian models amount to “just-so” stories with little explanatory value (Jones and Love 2011), there are reasonable answers to such challenges (Zednik and Jäkel 2016), and plausible ways to interpret the various aspects of Bayesian models that render them empirically tractable (Icard 2016).

  8. 8.

    This is one way in which character traits may serve as an inferential heuristic: without this over-hypothesis, mindreaders would begin their action-predictions with a flat probability distribution over all the mental state hypotheses consistent with their current behavioral observations, which would give rise to an inverse problem. Instead, trait attributions bias the prior probability distribution towards a subset of mental-state hypotheses, which the predictor can proceed to test. Even if this distribution is in fact erroneous, it still serves as a means of bootstrapping our initial mental-state predictions, which then allow us to update our priors accordingly.

  9. 9.

    Members of “collectivist” cultures, who habitually attend to contextual factors, no doubt benefit from such attentional effects in their comparative resistance to the correspondence bias.

  10. 10.

    Thanks to an anonymous reviewer for suggesting this.

  11. 11.

    This may be an instance of what Cimpian and Salomon call the ‘inherence heuristic’—a “fast, intuitive heuristic leads people to explain many observed patterns in terms of the inherent features of the things that instantiate these patterns” (Cimpian and Salomon 2014, p. 461)—and a precursor to psychological essentialism about certain social categories (Gelman 2004; Haslam et al. 2006; Rhodes et al. 2012).

References

  1. Ames, D. L., & Fiske, S. T. (2013). Outcome dependency alterns the neural substrates of impression formation. NeuroImage, 83, 599–608. doi:10.1016/j.neuroimage.2013.07.001.Outcome.

    Article  Google Scholar 

  2. Ames, D. R., Flynn, F. J., & Weber, E. U. (2004). It’s the thought that counts: on perceiving how helpers decide to lend a hand. Personality and Social Psychology Bulletin, 30(4), 461–474. doi:10.1177/0146167203261890.

    Article  Google Scholar 

  3. Ames, D. L., Fiske, S. T., & Todorov, A. (2011). Impression formation: A focus on others’ intents. The Oxford handbook of social neuroscience. Oxford: Oxford University Press.

    Google Scholar 

  4. Andrews, K. (2008). It’s in your nature: A pluralistic folk psychology. Synthese, 165(1), 13–29. doi:10.1007/s11229-007-9230-5.

    Article  Google Scholar 

  5. Andrews, K. (2012). Do apes read minds?: Toward a new folk psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  6. Anscombe, G. E. M. (1958). Modern moral philosophy. Philosophy, 33(124), 1–19.

    Article  Google Scholar 

  7. Apperly, I., & Butterfill, S. A. (2009). Do humans have two systems to track beliefs and belief-like states? Psychological Review, 116(4), 953–970. doi:10.1037/a0016923.

    Article  Google Scholar 

  8. Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280–289. doi:10.1016/j.tics.2007.05.005.

    Article  Google Scholar 

  9. Bar, M., Neta, M., & Linz, H. (2006). Very first impressions. Emotion, 6(2), 269–278. doi:10.1037/1528-3542.6.2.269.

    Article  Google Scholar 

  10. Behrens, T. E. J., Hunt, L. T., & Rushworth, M. F. S. (2009). The computation of social behavior. Science (New York, N.Y.), 324(5931), 1160–1164. doi:10.1126/science.1169694.

    Article  Google Scholar 

  11. Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology. doi:10.1016/j.cub.2007.11.057.

    Google Scholar 

  12. Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12(5), 187–192. doi:10.1016/j.tics.2008.02.010.

    Article  Google Scholar 

  13. Carey, S. (2009). The origin of concepts. Oxford University Press. https://books.google.com/books?hl=en&lr=&id=J5flK50tDaIC&pgis=1. Accessed 29 April 2015.

  14. Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition: Conceptual foundations. Trends in Cognitive Sciences. doi:10.1016/j.tics.2006.05.007.

    Google Scholar 

  15. Chaumon, M., Kveraga, K., Barrett, L. F., & Bar, M. (2014). Visual predictions in the orbitofrontal cortex rely on associative content. Cerebral Cortex, 24(11), 2899–2907. doi:10.1093/cercor/bht146.

    Article  Google Scholar 

  16. Choi, I., & Nisbett, R. E. (1998). Situational salience and cultural differences in the correspondence bias and actor-observer bias. Personality and Social Psychology Bulletin. doi:10.1177/0146167298249003.

    Google Scholar 

  17. Choi, I., Nisbett, R. E., & Norenzayan, A. (1999). Causal attribution across cultures: Variation and universality. Psychological Bulletin, 125(1), 47–63. doi:10.1037/0033-2909.125.1.47.

    Article  Google Scholar 

  18. Christensen, W., & Michael, J. (2015). From two systems to a multi-systems architecture for mindreading. New Ideas in Psychology. doi:10.1016/j.newideapsych.2015.01.003.

    Google Scholar 

  19. Cimpian, A., & Salomon, E. (2014). The inherence heuristic: An intuitive means of making sense of the world, and a potential precursor to psychological essentialism. Behavioral and Brain Sciences, 37(05), 461–480. doi:10.1017/S0140525X13002197.

    Article  Google Scholar 

  20. Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford: Oxford University Press.

    Google Scholar 

  21. Cloutier, J., Gabrieli, J. D. E., O’Young, D., & Ambady, N. (2011). An fMRI study of violations of social expectations: When people are not who we expect them to be. NeuroImage. doi:10.1016/j.neuroimage.2011.04.051.

    Google Scholar 

  22. Cogsdill, E. J., Todorov, A., Spelke, E. S., & Banaji, M. R. (2014). Inferring character from faces: A developmental study. Psychological Science, 25(5), 1132–1139. doi:10.1177/0956797614523297.

    Article  Google Scholar 

  23. Csibra, G. (2008). Action mirroring and action understanding: An alternative account. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorymotor foundations of higher cognition. Attention and performance XXII (pp. 435–459). Oxford: Oxford University Press.

    Google Scholar 

  24. Cuddy, A. J. C., Fiske, S. T., & Glick, P. (2007). The BIAS map: Behaviors from intergroup affect and stereotypes. Journal of Personality and Social Psychology, 92(4), 631–648. doi:10.1037/0022-3514.92.4.631.

    Article  Google Scholar 

  25. Cuddy, A. J. C., Fiske, S. T., Kwan, V. S. Y., Glick, P., Demoulin, S., Leyens, J.-P., et al. (2009). Stereotype content model across cultures: Towards universal similarities and some differences. British Journal of Social Psychology, 48(1), 1–33. doi:10.1348/014466608X314935.

    Article  Google Scholar 

  26. Cunningham, W. A., Zelazo, P. D., Packer, D. J., & Van Bavel, J. J. (2007). The iterative reprocessing model: A multilevel framework for attitudes and evaluation. Social Cognition, 25(5), 736–760. doi:10.1521/soco.2007.25.5.736.

    Article  Google Scholar 

  27. de Bruin, L., & Strijbos, D. (2015). Direct social perception, mindreading and Bayesian predictive coding. Consciousness and Cognition, 36, 565–570. doi:10.1016/j.concog.2015.04.014.

    Article  Google Scholar 

  28. Deen, B., & Saxe, R. R. (2012). Neural correlates of social perception: The posterior superior temporal sulcus is modulated by action rationality, but not animacy. In Proceedings of the 33rd Annual Cognitive Science Society Conference (pp. 276–281).

  29. Doris, J. M. (2002). Lack of character: Personality and moral behavior. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  30. Fein, S. (1996). Effects of suspicion on attributional thinking and the correspondence bias. Journal of Personality and Social Psychology, 70(6), 1164. doi:10.1037/0022-3514.70.6.1164.

    Article  Google Scholar 

  31. Ferrari, C., Vecchi, T., Todorov, A., & Cattaneo, Z. (2016). Interfering with activity in the dorsomedial prefrontal cortex via TMS affects social impressions updating. Cognitive, Affective, & Behavioral Neuroscience. doi:10.3758/s13415-016-0419-2.

    Google Scholar 

  32. Fiebich, A., & Coltheart, M. (2015). Various ways to understand other minds: Towards a pluralistic approach to the explanation of social understanding. Mind and Language, 30(3), 235–258. doi:10.1111/mila.12079.

    Article  Google Scholar 

  33. Fiske, S. T. (2015). Intergroup biases: A focus on stereotype content. Current Opinion in Behavioral Sciences, 3(April), 45–50. doi:10.1016/j.cobeha.2015.01.010.

    Article  Google Scholar 

  34. Fiske, S. T., Cuddy, A. J. C., & Glick, P. (2007). Universal dimensions of social cognition: Warmth and competence. Trends in Cognitive Sciences, 11(2), 77–83. doi:10.1016/j.tics.2006.11.005.

    Article  Google Scholar 

  35. Foot, P. (1967). Theories of ethics. Oxford: Oxford University Press.

    Google Scholar 

  36. Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1521), 1211–1221.

    Article  Google Scholar 

  37. Gallese, V., & Goldman, A. (1998). Mirror neurons and the mind-reading. Trends in cognitive sciences, 2(12), 493–501.

    Article  Google Scholar 

  38. Gawronski, B. (2004). Theory-based bias correction in dispositional inference: The fundamental attribution error is dead, long live the correspondence bias. European Review of Social Psychology. doi:10.1080/10463280440000026.

    Google Scholar 

  39. Gelman, S. A. (2004). Psychological essentialism in children. Trends in Cognitive Sciences, 8(9), 404–409.

    Article  Google Scholar 

  40. Gilbert, D. T., Pelham, B. W., & Krull, D. S. (1988). On cognitive busyness: When person perceivers meet persons perceived. Journal of Personality and Social Psychology, 54(5), 733–740. doi:10.1037/0022-3514.54.5.733.

    Article  Google Scholar 

  41. Gilbert, D. T., Malone, P. S., Aronson, J., Giesler, B., Higgins, T., Ross, L., et al. (1995). The correspondence bias. Psychological Bulletin, 117(1), 21–38. doi:10.1037/0033-2909.117.1.21.

    Article  Google Scholar 

  42. Goldman, A. I. (2006). Simulating minds: The philosophy, psychology, and neuroscience of mindreading. Oxford University Press. https://books.google.com/books?hl=en&lr=&id=gRlnfe67ZAQC&pgis=1. Accessed 5 May 2015.

  43. Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, Bayesian learning mechanisms, and the theory theory. Psychological Bulletin, 138(6), 1085–1108. doi:10.1037/a0028044.Reconstructing.

    Article  Google Scholar 

  44. Gray, C. (2007). Writing social stories with Carol Gray. Arlington: Future Horizons.

    Google Scholar 

  45. Harman, G. (1999). Moral philosophy meets social psychology: Virtue ethics and the fundamental attribution error author (s): Gilbert Harman Source. In Proceedings of the Aristotelian Society, New Series, 99 (pp. 315–331).

  46. Harris, L. T., Todorov, A., & Fiske, S. T. (2005). Attributions on the brain: Neuro-imaging dispositional inferences, beyond theory of mind. NeuroImage, 28(4), 763–769. doi:10.1016/j.neuroimage.2005.05.021.

    Article  Google Scholar 

  47. Haslam, N., Bastian, B., & Kashima, Y. (2006). Psychological essentialism, implicit theories, and intergroup relations. Group Processes and Intergroup Relations, 9(1), 63–76.

    Article  Google Scholar 

  48. Hassabis, D., Spreng, R. N., Rusu, A. A., Robbins, C. A., Mar, R. A., & Schacter, D. L. (2013). Imagine all the people: How the brain creates and uses personality models to predict behavior. Cerebral Cortex, 24(8), 1979–1987. doi:10.1093/cercor/bht042.

    Article  Google Scholar 

  49. Heal, J. (1996). Simulation, theory, and content. In P. Carruthers & P. K. Smith (Eds.), Theories of theories of mind (pp. 75–89). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  50. Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.

    Book  Google Scholar 

  51. Hohwy, J., & Palmer, C. (2014). Social cognition as causal inference: Implications for common knowledge and autism. In M. Gallotti & J. Michael (Eds.), Perspectives on social ontology and social cognition (pp. 167–189). Dordrecht: Springer, Netherlands. doi:10.1007/978-94-017-9147-2_12.

    Google Scholar 

  52. Hooper, N., Ergogan, A., Keen, G., Lawton, K., & McHugh, L. (2015). Perspective taking reduces the fundamental attribution error.pdf. Journal of Contextual Behavioral Science, 4, 69–72.

    Article  Google Scholar 

  53. Icard, T. (2016). Subjective probability as sampling propensity. Review of Philosophy and Psychology, 7(4), 863–903. doi:10.1007/s13164-015-0283-y.

    Article  Google Scholar 

  54. Isen, A. M., & Levin, P. F. (1972). Effect of feeling good on helping: Cookies and kindness. Journal of Personality and Social Psychology, 21(3), 384–388. doi:10.1037/h0032317.

    Article  Google Scholar 

  55. Jacob, P., & Jeannerod, M. (2005). The motor theory of social cognition: A critique. Trends in Cognitive Sciences, 9(1), 21–25. doi:10.1016/j.tics.2004.11.003.

    Article  Google Scholar 

  56. Jastorff, J., Clavagnier, S., Gergely, G., & Orban, G. A. (2011). Neural mechanisms of understanding rational actions: Middle temporal gyrus activation by contextual violation. Cerebral Cortex, 21(2), 318–329. doi:10.1093/cercor/bhq098.

    Article  Google Scholar 

  57. Jeannerod, M., Arbib, M. A., Rizzolatti, G., & Sakata, H. (1995). Grasping objets: The cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18(7), 314–320. http://www.sciencedirect.com/science/article/pii/016622369593921J.

  58. Jones, E., & Harris, A. (1967). The attribution of attitudes. Journal of Experimental Social Psychology, 3, 1–24.

    Article  Google Scholar 

  59. Jones, M., & Love, B. C. (2011). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. The Behavioral and Brain Sciences, 34(4), 169–188. doi:10.1017/S0140525X10003134.

    Article  Google Scholar 

  60. Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Macmillan.

    Google Scholar 

  61. Kalish, C. W. (2002). Children’s predictions of consistency in people’s actions. Cognition, 84(3), 237–265. doi:10.1016/S0010-0277(02)00052-5.

    Article  Google Scholar 

  62. Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical Bayesian models. Developmental Science, 10(3), 307–321. doi:10.1111/j.1467-7687.2007.00585.x.

    Article  Google Scholar 

  63. Kestemont, J., Vandekerckhove, M., Ma, N., Van Hoeck, N., & Van Overwalle, F. (2013). Situation and person attributions under spontaneous and intentional instructions: An fMRI study. Social Cognitive and Affective Neuroscience, 8(5), 481–493. doi:10.1093/scan/nss022.

    Article  Google Scholar 

  64. Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8(3), 159–166. doi:10.1007/s10339-007-0170-2.Predictive.

    Article  Google Scholar 

  65. Kitayama, S., Duffy, S., Kawamura, T., & Larsen, J. T. (2003). Perceiving an object and its context in different cultures: A cultural look at new look. Psychological Science, 14(3), 201–206.

    Article  Google Scholar 

  66. Knobe, J. (2003). Intentional action and side effects in ordinary language. Analysis, 63(3), 190–194.

    Article  Google Scholar 

  67. Koster-Hale, J., & Saxe, R. (2013). Theory of mind: A neural prediction problem. Neuron, 79(5), 836–848. doi:10.1016/j.neuron.2013.08.020.

    Article  Google Scholar 

  68. Kovács, Á. M. (2016). Belief files in theory of mind reasoning. Review of Philosophy and Psychology, 7(2), 509–527.

    Article  Google Scholar 

  69. Krull, D. S., Hui-Min Loy, M., Lin, J., Wang, C.-F., Chen, S., & Zhao, X. (1999). The fundamental fundamental attribution error: Correspondence bias in individualist and collectivist cultures.pdf. Personality and Social Psychology Bulletin, 25(10), 1208–1219.

    Article  Google Scholar 

  70. Krull, D. S., Seger, C. R., & Silvera, D. H. (2008). Smile when you say that: Effects of willingness on dispositional inferences. Journal of Experimental Social Psychology, 44(3), 735–742. doi:10.1016/j.jesp.2007.05.004.

    Article  Google Scholar 

  71. Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos (Ed.), Criticism and the growth of knowledge (pp. 91–196). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  72. Liepelt, R., & Brass, M. (2010). Top-down modulation of motor priming by belief about animacy. Experimental Psychology, 57(3), 221–227. doi:10.1027/1618-3169/a000028.

    Article  Google Scholar 

  73. Liepelt, R., & Von Cramon, D. Y. (2008). What is matched in direct matching? Intention Attribution Modulates Motor Priming, 34(3), 578–591. doi:10.1037/0096-1523.34.3.578.

    Google Scholar 

  74. Ma, N., Vandekerckhove, M., Baetens, K., Overwalle, F. Van, Seurinck, R., & Fias, W. (2011). Inconsistencies in spontaneous and intentional trait inferences. Social Cognitive and Affective Neuroscience, 7(8), 937–950. doi:10.1093/scan/nsr064.

    Article  Google Scholar 

  75. Ma, N., Vandekerckhove, M., Van Hoeck, N., & Van Overwalle, F. (2012). Distinct recruitment of temporo-parietal junction and medial prefrontal cortex in behavior understanding and trait identification. Social Neuroscience, 7(6), 591–605. doi:10.1080/17470919.2012.686925.

    Article  Google Scholar 

  76. Malle, B. F. (2004). How the mind explains behavior: Folk explanations, meaning, and social interaction. Cambridge, MA: MIT Press.

    Google Scholar 

  77. McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: Naive beliefs about the motion of objects. Science, 210(4474), 1139–1141.

    Article  Google Scholar 

  78. Mende-Siedlecki, P., Cai, Y., & Todorov, A. (2013). The neural dynamics of updating person impressions. Social Cognitive and Affective Neuroscience, 8(6), 623–631. doi:10.1093/scan/nss040.

    Article  Google Scholar 

  79. Miller, C. B. (2013). Moral character: An empirical theory. Oxford: Oxford University Press.

    Book  Google Scholar 

  80. Miyamoto, Y., & Kitayama, S. (2002). Cultural variation in correspondence bias: the critical role of attitude diagnosticity of socially constrained behavior. Journal of Personality and Social Psychology. doi:10.1037/0022-3514.83.5.1239.

    Google Scholar 

  81. Norenzayan, A., Choi, I., & Nisbett, R. (2003). Cultural similarities and differences in social inference: evidence from behavioral predictions and lay theories of behavior. Human Resource Abstracts, 38(2), 109–120.

    Google Scholar 

  82. Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs? Science, 308(5719), 255–258. doi:10.1126/science.1107621.

    Article  Google Scholar 

  83. Rakoczy, H. (2017). In defense of a developmental dogma: children acquire propositional attitude folk psychology around age 4. Synthese, 194(3), 689–707. doi:10.1007/s11229-015-0860-8.

    Article  Google Scholar 

  84. Reeder, G. D. (2009). Mindreading: Judgments about intentionality and motives in dispositional inference. Psychological Inquiry, 20(1), 1–18. doi:10.1080/10478400802615744.

    Article  Google Scholar 

  85. Reeder, G. D., Vonk, R., Ronk, M. J., Ham, J., & Lawrence, M. (2004). Dispositional attribution: Multiple inferences about motive-related traits. Journal of Personality and Social Psychology, 86(4), 530–544. doi:10.1037/0022-3514.86.4.530.

    Article  Google Scholar 

  86. Rhodes, M., Leslie, S.-J., & Tworek, C. M. (2012). Cultural transmission of social essentialism. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13526–13531. doi:10.1073/pnas.1208951109.

    Article  Google Scholar 

  87. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. doi:10.1146/annurev.neuro.27.070203.144230.

    Article  Google Scholar 

  88. Ross, L. (1977). The intuitive psychologist and his shortcomings: Distortions in the attribution process. Advances in Experimental Social Psychology. doi:10.1016/S0065-2601(08)60357-3.

    Google Scholar 

  89. Sabini, J., & Silver, M. (2005). Lack of character? situationism critiqued. Ethics, 115(3), 535–562. doi:10.1086/428459.

    Article  Google Scholar 

  90. Sagar, H. A., & Schofield, J. W. (1980). Racial and behavioral cues in Black and White children’s perceptions of ambiguously aggressive acts. Journal of Personality and Social Psychology, 39(4), 590–598. doi:10.1037/0022-3514.39.4.590.

    Article  Google Scholar 

  91. Saxe, R., & Kanwisher, N. (2003). People thinking about thinking peopleThe role of the temporo-parietal junction in “theory of mind”. NeuroImage, 19(4), 1835–1842. doi:10.1016/S1053-8119(03)00230-1.

    Article  Google Scholar 

  92. Saxe, R., & Wexler, A. (2005). Making sense of another mind: The role of the right temporo-parietal junction. Neuropsychologia. doi:10.1016/j.neuropsychologia.2005.02.013.

    Google Scholar 

  93. Seligman, M. E. P., Railton, P., Baumeister, R. F., & Sripada, C. (2013). Navigating into the future or driven by the past. Perspectives on Psychological Science, 8(2), 119–141. doi:10.1177/1745691612474317.

    Article  Google Scholar 

  94. Spaulding, S. (2016). Mind misreading (p. 26). Issues: Philosophical.

    Google Scholar 

  95. Spratling, M. W. (2008). Predictive coding as a model of biased competition in visual attention. Vision Research, 48(12), 1391–1408. doi:10.1016/j.visres.2008.03.009.

    Article  Google Scholar 

  96. Spratling, M. W. (2016). Predictive coding as a model of cognition. Cognitive Processing, 17(3), 279–305. doi:10.1007/s10339-016-0765-6.

    Article  Google Scholar 

  97. Sreenivasan, G. (2002). Errors about errors: Virtue theory and trait attribution. Mind, 111(441), 47–68. doi:10.1093/mind/111.441.47.

    Article  Google Scholar 

  98. Sripada, C. S. (2009). The deep self model and asymmetries in folk judgments about intentional action. Philosophical Studies, 151(2), 159–176. doi:10.1007/s11098-009-9423-5.

    Article  Google Scholar 

  99. Sripada, C. S. (2012). Mental state attributions and the side-effect effect. Journal of Experimental Social Psychology, 48(1), 232–238. doi:10.1016/j.jesp.2011.07.008.

    Article  Google Scholar 

  100. Sripada, C. S., & Konrath, S. (2011). Telling more than we can know about intentional action. Mind and Language, 26(3), 353–380.

    Article  Google Scholar 

  101. Tannenbaum, D., Uhlmann, E. L., & Diermeier, D. (2011). Moral signals, public outrage, and immaterial harms. Journal of Experimental Social Psychology. doi:10.1016/j.jesp.2011.05.010.

    Google Scholar 

  102. Todorov, A. (2013). Making up your mind after 100-ms exposure to face. Psychological Science, 17(7), 592–598.

    Google Scholar 

  103. Todorov, A., Said, C. P., Engell, A. D., & Oosterhof, N. N. (2008). Understanding evaluation of faces on social dimensions. Trends in Cognitive Sciences, 12(12), 455–460. doi:10.1016/j.tics.2008.10.001.

    Article  Google Scholar 

  104. Trope, Y., & Gaunt, R. (2007). Attribution and person perception. In M. Hogg & J. Cooper (Eds.), The sage handbook of social psychology (pp. 176–194). London: Sage Publications.

    Google Scholar 

  105. Uhlmann, E. L., Pizarro, D. A., & Diermeier, D. (2015). A person-centered approach to moral judgment. Perspectives on Psychological Science, 10(1), 72–81. doi:10.1177/1745691614556679.

    Article  Google Scholar 

  106. Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing. Neuron, 31(1), 155–165. doi:10.1016/S0896-6273(01)00337-3.

    Article  Google Scholar 

  107. Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829–858. doi:10.1002/hbm.20547.

    Article  Google Scholar 

  108. Wellman, H. M. (2014). Making minds: How theory of mind develops. Oxford: Oxford University Press.

    Book  Google Scholar 

  109. Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory-of-mind development: the truth about false belief. Child development, 72(3), 655–84. http://www.ncbi.nlm.nih.gov/pubmed/11405571.

  110. Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13(1), 103–128. doi:10.1016/0010-0277(83)90004-5.

    Article  Google Scholar 

  111. Zednik, C., & Jäkel, F. (2016). Bayesian reverse-engineering considered as a research strategy for cognitive science. Synthese, 193(12), 3951–3985. doi:10.1007/s11229-016-1180-3.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Peter Carruthers, Georges Rey, Andrew Knoll, Joseph Jebari, and Charles Starkey for comments on drafts of this paper, and Julius Schönherr, Moonyong Song, Shen Pan, Yichi Zhang, Aida Roige Mas, Kalewold Hailu Kalewald, and Casey Enos for helpful discussion. This research was supported by a Social Sciences and Humanities Research Council Doctoral Fellowship (#752-2014-0035).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Evan Westra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Westra, E. Character and theory of mind: an integrative approach. Philos Stud 175, 1217–1241 (2018). https://doi.org/10.1007/s11098-017-0908-3

Download citation

Keywords

  • Character
  • Trait attribution
  • Theory of mind
  • Mindreading
  • Bayesian predictive coding