Philosophical Studies

, Volume 165, Issue 2, pp 647–669 | Cite as

Visual spatial constancy and modularity: Does intention penetrate vision?

Article

Abstract

Is vision informationally encapsulated from cognition or is it cognitively penetrated? I shall argue that intentions penetrate vision in the experience of visual spatial constancy: the world appears to be spatially stable despite our frequent eye movements. I explicate the nature of this experience and critically examine and extend current neurobiological accounts of spatial constancy, emphasizing the central role of motor signals in computing such constancy. I then provide a stringent condition for failure of informational encapsulation that emphasizes a computational condition for cognitive penetration: cognition must serve as an informational resource for visual computation. This requires proposals regarding semantic information transfer, a crucial issue in any model of informational encapsulation. I then argue that intention provides an informational resource for computation of visual spatial constancy. Hence, intention penetrates vision.

Keywords

Consciousness Vision Corollary discharge Modularity Informational encapsulation Spatial representation 

References

  1. Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annual Review of Neuroscience, 25(1), 189–220.CrossRefGoogle Scholar
  2. Berman, R., & Colby, C. (2009). Attention and active vision. Vision Research, 49(10), 1233–1248.CrossRefGoogle Scholar
  3. Blakemore, S. J., & Frith, C. D. (2003). Disorders of self-monitoring and the symptoms of schizophrenia. In T. Kircher & A. David (Eds.), The self in neuroscience and psychiatry (pp. 407–424). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Bratman, M. (1987). Intention, plans and practical reason. Cambridge, MA: Harvard University Press.Google Scholar
  5. Bridgeman, B., & Stark, L. (1991). Ocular proprioception and efference copy in registering visual direction. Vision Research, 31(11), 1903–1913.CrossRefGoogle Scholar
  6. Bridgeman, B., Van der Heijden, A. H. C., & Velichkovsky, B. M. (1994). A theory of visual stability across saccadic eye movements. Behavioral and Brain Sciences, 17(02), 247–258.CrossRefGoogle Scholar
  7. Clark, A. (1996). Three varieties of visual field. Philosophical Psychology, 9(4), 477–495.CrossRefGoogle Scholar
  8. Cohen, Y. E., & Andersen, R. A. (2002). A common reference frame for movement plans in the posterior parietal cortex. Nature Reviews Neuroscience, 3(7), 553–562.CrossRefGoogle Scholar
  9. Colby, C. (1998). Action-oriented spatial reference frames in cortex. Neuron, 20, 15–24.CrossRefGoogle Scholar
  10. Deubel, H., Koch, C., & Bridgeman, B. (2010). Landmarks facilitate visual space constancy across saccades and during fixation. Vision Research, 50(2), 249–259.CrossRefGoogle Scholar
  11. Dretske, F. (1981). Knowledge and the flow of information. Cambridge, MA: MIT Press.Google Scholar
  12. Fodor, J. A. (1983). The modularity of mind: An essay on faculty psychology. Cambridge, MA: MIT Press.Google Scholar
  13. Fodor, J. A. (2001). The mind doesn’t work that way: The scope and limits of computational psychology. Cambridge, MA: MIT Press.Google Scholar
  14. Haarmeier, T., Thier, P., Repnow, M., & Petersen, D. (1997). False perception of motion in a patient who cannot compensate for eye movements. Nature, 389(6653), 849–851.CrossRefGoogle Scholar
  15. Land, M. F. (2006). Eye movements and the control of actions in everyday life. Progress in Retinal and Eye Research, 25, 296–324.CrossRefGoogle Scholar
  16. Macpherson, F. (2012). Cognitive penetration of colour experience: Rethinking the issue in light of an indirect mechanism. Philosophy and Phenomenological Research, 84(1), 24–62.CrossRefGoogle Scholar
  17. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.Google Scholar
  18. Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107, 179–217.CrossRefGoogle Scholar
  19. Peacocke, C. (1992). A study of concepts. Cambridge, MA: MIT Press.Google Scholar
  20. Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22, 341–423.Google Scholar
  21. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.CrossRefGoogle Scholar
  22. Siegel, S. (2011). Cognitive penetrability and perceptual justification. Noûs, 46(2), 201–222.CrossRefGoogle Scholar
  23. Sommer, M. A., & Wurtz, R. H. (2002). A pathway in primate brain for internal monitoring of movements. Science, 296(5572), 1480–1482.CrossRefGoogle Scholar
  24. Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology, 43(6), 482.CrossRefGoogle Scholar
  25. Stokes, D. (2011). Perceiving and desiring: A New look at the cognitive penetrability of experience. Philosophical Studies. doi:10.1007/s11098-010-9688-8.
  26. von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaften, 37, 464–476.CrossRefGoogle Scholar
  27. Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(Suppl), 1212–1217.CrossRefGoogle Scholar
  28. Wu, W. (2008). Visual attention, conceptual content, and doing it right. Mind, 117(468), 1003–1033.CrossRefGoogle Scholar
  29. Wurtz, R. H., Joiner, W. M., & Berman, R. A. (2011). Neuronal mechanisms for visual stability: Progress and problems. Philosophical Transactions of the Royal Society B, 366(1564), 492.CrossRefGoogle Scholar
  30. Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations