Philosophical Studies

, Volume 164, Issue 2, pp 371–392 | Cite as

Offline and online data: on upgrading functional information to knowledge

Article

Abstract

This paper addresses the problem of upgrading functional information to knowledge. Functional information is defined as syntactically well-formed, meaningful and collectively opaque data. Its use in the formal epistemology of information theories is crucial to solve the debate on the veridical nature of information, and it represents the companion notion to standard strongly semantic information, defined as well-formed, meaningful and true data. The formal framework, on which the definitions are based, uses a contextual version of the verificationist principle of truth in order to connect functional to semantic information, avoiding Gettierization and decoupling from true informational contents. The upgrade operation from functional information uses the machinery of epistemic modalities in order to add data localization and accessibility as its main properties. We show in this way the conceptual worthiness of this notion for issues in contemporary epistemology debates, such as the explanation of knowledge process acquisition from information retrieval systems, and open data repositories.

Keywords

Epistemic modalities Functional information Upgrade 

References

  1. Allo, P. (2010). The logic of being informed revisited and revised. Philosophical Studies 153(3), 417–434.CrossRefGoogle Scholar
  2. Bellin, G., de Paiva, V. & Ritter, E. (2001). Extended Curry-Howard correspondence for a basic constructive modal logic. Presented at M4M-2, ILLC, UvAmsterdam, Amsterdam (in press).Google Scholar
  3. Besiki, S., Twidale, M. B., Smith, L. C. & Gasser, L. (2008). Information quality work organization in Wikipedia. Journal of the American Society for Information Science and Technology 59: 983-1001 doi:10.1002/asi.20813.CrossRefGoogle Scholar
  4. Colburn, T. (2000). Philosophy and computer science. New York: Armonk.Google Scholar
  5. De Rose, K. (1991). Epistemic possibilities. Philosophical Review, 100, 581– 605.CrossRefGoogle Scholar
  6. Dietz, R. (2008). Epistemic modals and correct disagreement. In Carpintero M. G., Kölbel M. (Ed.), Relative truth, chapter 11. Oxford: Oxford University Press.Google Scholar
  7. Dodig-Crnkovic, G. (2005). System modeling and information semantics. In J. Bubenko, O. Eriksson, H. Fernlund, M. Lind (Eds.), Proceedings of the Fifth Promote IT Conference. Studentlitteratur.Google Scholar
  8. Dummett, M. (1978). Truth and other enigmas. Cambridge, MA: Duckworth, London and Harvard University Press.Google Scholar
  9. Dummett, M. (1991). The logical basis of metaphysics. Cambridge, MA: Duckworth, London and Harvard University Press.Google Scholar
  10. Egan, A. (2007). Epistemic modals, relativism and assertion.Philosophical Studies, 133(1), 1–22.CrossRefGoogle Scholar
  11. Fetzer, J. H. (2004). Information: Does it have to be true?. Minds & Machines, 14, 223–229.CrossRefGoogle Scholar
  12. Floridi, L. (2004a). Open problems in the philosophy of information. Metaphilosophy, 35(4), 554–582.CrossRefGoogle Scholar
  13. Floridi, L. (2004b) On the logical unsolvability of the Gettier problem. Synthese, 142(1), 61–79.CrossRefGoogle Scholar
  14. Floridi, L. (2005). Is information meaningful data?. Philosophy and Phenomenological Research 70(2), 351–370.CrossRefGoogle Scholar
  15. Floridi, L. (2006). The logic of being informed. Logique & Analyse 196, 433–460.Google Scholar
  16. Floridi, L. (2009). Philosophical conceptions of informationn. In G. Sommaruga (Ed.), Formal Theories of Information, volume 5363 of Lectures Notes in Computer Science (pp. 13–53). Berlin: Springer Verlag.Google Scholar
  17. Floridi, L. (2010a). Semantic information and the network theory of account. Synthese. doi:10.1007/s11229-010-9821-4 ( forthcoming).
  18. Floridi, L. (2010b). Semantic information and the correctness theory of truth. Erkenntnis 74(2), 147–175.CrossRefGoogle Scholar
  19. Floridi, L. (2010c). Information—A very short introduction. Oxford: Oxford University Press.Google Scholar
  20. Floridi, L. (2011a). The philosophy of information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Floridi, L. (2011b). A defence of constructionism: Philosophy as conceptual engineering. Metaphilosophy 42(3), 282-304.CrossRefGoogle Scholar
  22. Gunter, C. A. (1994). The semantics of types in programming languages. In S. Abramsky, D. M. Gabbay, & T. S. E. Maibaum (Eds.), Handbook of logic in computer science, Vol. 3: Semantic structures. (pp. 395–475). Oxford: Oxford University Press.Google Scholar
  23. Kahle, R. (2006). A proof-theoretic view of necessity. Synthese 148(3), 659–673.CrossRefGoogle Scholar
  24. Kahle, R. (2012). Modalities without worlds. In M. Marion, G. Primiero & S. Rahman (Eds.), The Realism-Antirealism debate in the Age of Alternative Logics, Logic, Epistemology and the Unity of Science (pp. 101–118). Dordrecht: Springer Verlag.Google Scholar
  25. Kolmogorov, A. (1967). On the principle of excluded middle. In J. Van Heijenoort (Ed.), From Frege to Gödel: a source book in mathematical logic 1879–1931 (pp. 414–437). Cambridge: Harvard University Press.Google Scholar
  26. Martin-Löf, P. (1984). Intuitionistic type theory. Naples: Bibliopolis.Google Scholar
  27. Martin-Löf, P. (1987). Truth of a proposition, evidence of a judgement, validity of a proof. Synthese 73(3), 407–420.CrossRefGoogle Scholar
  28. Martin-Löf, P. (1996). On the meaning of the logical constants and the justifications of the logical laws. Nordic Journal of Philosophical Logic, 1(1), 11–60.Google Scholar
  29. McFarlan, J. (2005). Making sense of relative truth. Proceedings of the Aristotelian Society, 105, 321–339.CrossRefGoogle Scholar
  30. Moody, J. (2003). Modal logic as a basis for distributed computation. Technical Report CMU-CS-03-194, School of Computer Science. Pittsburgh, PA: Carnegie-Mellon University.Google Scholar
  31. Murphy, T. (2008). Modal Types for Mobile Code. PhD thesis, School of Computer Science. Carnegie Mellon University, Pittsburgh, PA. CMU-CS-08-126.Google Scholar
  32. Nanevski, A., Pfenning, F. & Pientka, B. (2008). Contextual modal type theory. ACM Transactions on Computational Logic, 9(3), 1–48.CrossRefGoogle Scholar
  33. Pfenning, F. & Davies, R. (2001). A judgemental reconstruction of modal logic. Mathematical Structures in Computer Science, 11, 511–540.CrossRefGoogle Scholar
  34. Primiero, G. (2007). An epistemic constructive definition of information. Logique & Analyse, 50(200), 391–416.Google Scholar
  35. Primiero, G. (2009a). Proceeding in Abstraction. From concepts to types and the recent perspective on Information. History and Philosophy of Logic, 30(3), 257–282.Google Scholar
  36. Primiero, G. (2009b). Epistemic modalities. In G. Primiero & S. Rahman (Eds.), Acts of Knowledge—History, Philosophy and Logic (pp.207–232). London: College Publications.Google Scholar
  37. Primiero, G. (2010). A multi-modal type system and its procedural semantics for safe distributed programming. Manuscript. Presented at Intuitionistic Modal Logic and Applications Workshop (IMLA11), Nancy, 2011 (submitted).Google Scholar
  38. Primiero, G. (2012). A contextual type theory with judgemental modalities for reasoning from open assumptions. Logique & Analyse, 220 (Forthcoming).Google Scholar
  39. Primiero, G. & Taddeo, G. (2011). A modal type theory for formalizing trusted communications. Journal of Applied Logic. doi:10.1016/j.jal.2011.12.002.
  40. Sambin, G. & Valentini, S. (1998). Building up a toolbox for Martin-Löf type theory: subset theory. In G. Sambin & S. Valentini (Eds.), Twenty-five years of Constructive Type Theory (pp. 221–244). Venice: Oxford University Press.Google Scholar
  41. Schaar v.d., M. (2009). The cognitive act and the first-person perspective: an epistemology for constructive type theory. Synthese. doi:10.1007/s11229-009-9708-4.
  42. Troelstra, A. S. & van Dalen, D. (1988). Constructivism in mathematics: An introduction (Vols. I, II). Amsterdam: North-Holland.Google Scholar
  43. Turner, R. & Eden, A. (2008). Philosophy of computer science. In Stanford Encyclopedia of Philosophy. Stanford : CSLI, Stanford University, December.Google Scholar
  44. Viégas, F.B., Wattenberg, M. & Dave, K. (2004). Studying cooperation and conflict between authors with history flow visualizations. CHI 2004, Vol. 6(1). http://alumni.media.mit.edu/fviegas/papers/history_flow.pd.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.FWO - Research Foundation Flanders, Centre for Logic and Philosophy of ScienceGhent UniversityBelgiumUK
  2. 2.IEG, Oxford UniversityOxfordUK

Personalised recommendations