Skip to main content
Log in

Enactive processing of the syntax of sign language

  • Published:
Phenomenology and the Cognitive Sciences Aims and scope Submit manuscript

Abstract

It is unfashionable to suggest that enactive processes - including some that involve the mirror neuron system - might contribute to the comprehension of sign language. The present essay formulates and defends a version of that unfashionable suggestion, as it applies to certain forms of syntactic processing. There is evidence that has been thought to weigh against any such suggestion, coming from neuroimaging experiments and from the study of Deaf aphasics. In both cases it is shown to be unpersuasive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbib, M. (2012). How the brain got language: The mirror system hypothesis. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Armstrong, D. F., Stokoe, W. C., & WIlcox, S. E. (1995). Gesture and the nature of language. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. de Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols and embodiment: Deabtes on meaning and cognition (pp. 245–284). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Bates, E., Friederici, A., & Wulfeck, B. (1987). Comprehension in aphasia: A cross-linguisitic study. Brain and Language, 32, 19–67.

    Article  Google Scholar 

  • Bellugi, U., Poizner, H., & Klima, E. S. (1983). Brain organization for language: Clues from sign aphasis. Human Neurobiology, 2, 155–170.

    Google Scholar 

  • Bonini, F., et al. (2014). Action monitoring and medial frontal cortex: Leading role of supplementary motor area. Science, 343(6173), 888–891.

    Article  Google Scholar 

  • Caplan, D. (2006). Aphasic deficits in syntactic processing. Cortex, 42(6), 797–804.

    Article  Google Scholar 

  • Caramazza, A., & Zurif, E. B. (1976). Dissociation of algorithmic and heuristic processes in language comprehension: Evidence from aphasia. Brain and Language, 3(4), 572–582.

    Article  Google Scholar 

  • Carpendale, J. I. M., & Lewis, C. (2008). Mirroring cannot account for understanding action. Behavioral and Brain Sciences, 31(1), 23–24.

    Article  Google Scholar 

  • Chemero, A. (2011). Radical embodied cognitive science. Cambridge: MIT Press.

    Google Scholar 

  • Corina, D. P., & Knapp, H. (2006). Sign language processing and the mirror neuron system. Cortex, 43(4), 529–539.

    Article  Google Scholar 

  • Corina, D. P., & Knapp, H. P. (2008). Signed language and human action processing: Evidence for functional constraints on the human mirror-neuron system. In G. F. Eden & D. L. Flowers (Eds.), Learning, skill acquisition, reading, and dyslexia (pp. 100–112). Oxford: Wiley Blackwell.

    Google Scholar 

  • De Renzi, E., & Vignolo, L. A. (1962). The token test: A sensitive test to detect receptive disturbances in aphasics. Brain, 85, 665–678.

    Article  Google Scholar 

  • di Pellegrino, G., et al. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176–180.

    Article  Google Scholar 

  • Emmorey, K. (2003). Neural systems underlying lexical retrieval for sign language. Neuropsychologia, 41, 85–95.

    Article  Google Scholar 

  • Emmorey, K. (2013). The neurobiology of sign language and the mirror system hypothesis. Language and Cognition, 5(2–3), 205–210.

    Article  Google Scholar 

  • Emmorey, K., et al. (2002). Neural systems underlying spatial language in American sign language. NeuroImage, 17(2), 812–824.

    Article  Google Scholar 

  • Emmorey, K., et al. (2010). CNS activation and regional connectivity during pantomime observation: No engagement of the mirror neuron system for deaf signers. NeuroImage, 49(1), 994–1005.

    Article  Google Scholar 

  • Emmorey, K., Mehta, S., McCullough, S., & Grabowski, T. J. (2016). The neural circuits recruited for the production of signs and fingerspelled words. Brain and Language, 160, 30–41.

    Article  Google Scholar 

  • Everett, D. L. (2017). How language began. New York: Liveright.

    Google Scholar 

  • Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15, 399–402.

    Article  Google Scholar 

  • Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. The Quarterly Journal of Experimental Psychology, 61(6), 825–850.

    Article  Google Scholar 

  • Gibbs, R. W. (1994). The poetics of mind: Figurative thought, language, and understanding. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gibbs, R. (2005). Embodiment and cognitive science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gleason, J. B., et al. (1975). The retrieval of syntax in Broca's aphasia. Brain and Language, 2, 451–471.

    Article  Google Scholar 

  • Grodzinsky, Y., Piñango, M. M., & Zurif, E. (1999). The critical role of group studies in neuropsychology: Comprehension regularities in Broca's aphasia. Brain and Language, 67(2), 134–147.

    Article  Google Scholar 

  • Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301–307.

    Article  Google Scholar 

  • Hickok, G., & Hauser, M. (2010). (Mis)understanding mirror neurons. Current Biology, 20(14), R593–R594.

    Article  Google Scholar 

  • Hickok, G., Kritchevsky, M., Bellugi, U., & Klima, E. S. (1996). The role of the left frontal operculum in sign language aphasia. Neurocase, 2(5), 373–380.

    Article  Google Scholar 

  • Hurley, S. (2008). The shared circuits model(SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31(1), 1–28.

    Article  Google Scholar 

  • Ivry, R. B., & Justus, T. C. (2001). A neural instantiation of the motor theory of speech perception. Trends in Neuroscience, 24, 513–515.

    Article  Google Scholar 

  • Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., Frith, C. D. (2009) Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29(32):10153–10159

  • Klima, E., & Bellugi, U. (1979). The signs of language. Cambridge: Harvard University Press.

    Google Scholar 

  • Knapp, H. P., & Corina, D. P. (2010). A human mirror system for language: Perspectives from signed languages of the deaf. Brain and Language, 112, 36–43.

    Article  Google Scholar 

  • Levänen, S., Uutela, K., Salenius, S., & Hari, R. (2001). Cortical representation of sign language: Comparison of deaf signers and hearing non-signers. Cerebral Cortex, 11(6), 506–512.

    Article  Google Scholar 

  • Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 1–36.

    Article  Google Scholar 

  • Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431–461.

    Article  Google Scholar 

  • Liddell, S. K. (2003). Grammar, gesture and meaning in American sign language. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • MacSweeney, M., et al. (2002). Neural correlates of British sign language comprehension: Spatial processing demands of topographic language. Journal of Cognitive Neuroscience, 14(7), 1064–1075.

    Article  Google Scholar 

  • Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11(2), 194–201.

    Article  Google Scholar 

  • McNeill, D. (2012). How language began: Gesture and speech in human evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mole, C. (2009). The motor theory of speech perception. In M. Nudds & C. O'Callaghan (Eds.), Sounds and perception: New philosophical essays. Oxford: Oxford University Press.

    Google Scholar 

  • Möttönen, R., & Watkins, K. E. (2009). Motor representations of articulators contribute to categorical perception of speech sounds. Journal of Neuroscience, 29(31), 9819–9825.

    Article  Google Scholar 

  • Newman, A. J., et al. (2010). Prosodic and narrative processing in American sign language: An fMRI study. NeuroImage, 52, 669–676.

    Article  Google Scholar 

  • O’Callaghan, C. (2015). Speech perception. In M. Matthen (Ed.), The Oxford handbook of philosophy of perception (pp. 475–494). Oxford: Oxford University Press.

    Google Scholar 

  • Okada, K., et al. (2016). An fMRI study of perception and action in deaf signers. Neuropsychologia, 82, 179–188.

    Article  Google Scholar 

  • Petitto, L. A., et al. (2000). Speech-like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language. Proceedings of the National Academy of Sciences, 97(25), 13961–13966.

    Article  Google Scholar 

  • Poizner, H., Klima, E. S., & Bellugi, U. (1987). What the hands reveal about the brain. Cambridge: The MIT Press.

    Google Scholar 

  • Pulvermüller, F. et al., 2006. Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences USA, 103(20), 7865–7870.

    Google Scholar 

  • Rogalsky, C., et al. (2013). Neural basis of action understanding: Evidence for sign language aphasia. Aphasiology, 27(9), 1147–1158.

    Article  Google Scholar 

  • Roland, P. E., Larsen, B., Lassen, N. A., & Skinhøj, E. (1980). Supplementary motor area and other cortical areas in Organization of Voluntary Movements in man. Journal of Neurophysiology, 43(1), 118–136.

    Article  Google Scholar 

  • Turvey, M. T. (2004). Impredicativity, dynamics, and the perception-action divide. In V. K. Jirsa & J. A. S. Kelso (Eds.), Coordination dynamics: Issues and trends (pp. 1–20). Berlin: Springer.

    Google Scholar 

  • Utman, J. A., Blumstein, S. E., & Sullivan, K. (2001). Mapping from sound to meaning: Reduced lexical activation in Broca's aphasics. Brain and Langugae, 79(3), 444–472.

    Article  Google Scholar 

  • Weiskopf, D. A. (2010). Embodied cognition and linguistic comprehension. Studies in History and Philosophy of Science Part A, 41(3), 294–304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Mole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mole, C., Turner, G.H. Enactive processing of the syntax of sign language. Phenom Cogn Sci 18, 317–332 (2019). https://doi.org/10.1007/s11097-017-9546-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11097-017-9546-7

Keywords

Navigation