Phenomenology and the Cognitive Sciences

, Volume 17, Issue 1, pp 15–42 | Cite as

Addiction and embodiment

  • Ellen FridlandEmail author
  • Corinde E. WiersEmail author


Recent experiments have shown that when individuals with a substance use disorder are confronted with drug-related cues, they exhibit an automatically activated tendency to approach these cues (i.e., drug approach bias). The strength of the drug approach bias has been associated with clinically relevant measures, such as increased drug craving and relapse, and activations in brain reward areas. Retraining the approach bias by means of cognitive bias modification has been demonstrated to decrease relapse rates in patients with an alcohol use disorder and to reduce alcohol cue-evoked limbic activity. Here, we review empirical and theoretical literature on the drug approach bias and explore two distinct models of how the drug approach bias may be embodied. First, we consider the “biological meaning” hypothesis, which grounds the automatic approach bias in the natural meaning of the body. Second, we consider the “sensorimotor hypothesis,” which appeals to the specific sensorimotor loops involved in the instantiation of addictive behaviors as the basis of the automatic approach bias. In order to differentiate between the adequacies of these competing explanations, we present specific, predictions that each model should make.


Addiction Approach bias Embodiment Implicit cognition 



CEW was funded by the Berlin School of Mind and Brain and Humboldt Graduate School.


  1. Attwood, A. S., O'Sullivan, H., Leonards, U., Mackintosh, B., & Munafo, M. R. (2008). Attentional bias training and cue reactivity in cigarette smokers. [research support, non-U.S. Gov't]. Addiction, 103(11), 1875–1882. doi: 10.1111/j.1360-0443.2008.02335.x.CrossRefGoogle Scholar
  2. Baler, R. D., & Volkow, N. D. (2006). Drug addiction: The neurobiology of disrupted self-control. Trends in Molecular Medicine, 12(12), 559–566. doi: 10.1016/j.molmed.2006.10.005.CrossRefGoogle Scholar
  3. Bargh, J. A. (1994). The four horsemen of automaticity: Awareness, intention, efficiency, and control in social cognition. In R. S. Wyer & T. K. S. Jr (Eds.), Handbook of social cognition: Basic processes; applications, Vols. 1–2 (2nd ed., pp. 1–40). Hillsdale: Lawrence Erlbaum Associates, Inc..Google Scholar
  4. Barkby, H., Dickson, J. M., Roper, L., & Field, M. (2012). To approach or avoid alcohol? Automatic and self-reported motivational tendencies in alcohol dependence. [research support, non-U.S. Gov't]. Alcoholism, Clinical and Experimental Research, 36(2), 361–368. doi: 10.1111/j.1530-0277.2011.01620.x.CrossRefGoogle Scholar
  5. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577–660.Google Scholar
  6. Barsalou, L. W. (2002). Being there conceptually: Simulating categories in preparation for situated action. In N. L. Stein, P. J. Bauer, & M. Rabinowitz (Eds.), Representation, memory, and development: Essays in honor of Jean Mandler (pp. 1–19). Mahwah: Erlbaum.Google Scholar
  7. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.CrossRefGoogle Scholar
  8. Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society of London: Biological Sciences, 364, 1281–1289.CrossRefGoogle Scholar
  9. Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2, 716–724.CrossRefGoogle Scholar
  10. Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. [research support, N.I.H., Extramural review]. Nature Neuroscience, 8(11), 1458–1463. doi: 10.1038/nn1584.CrossRefGoogle Scholar
  11. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295–307.CrossRefGoogle Scholar
  12. Bechara, A., Damasio, H., & Damasio, A. R. (2003). Role of the amygdala in decisionmaking. Annals of the New York Academy of Sciences, 985, 356–369.CrossRefGoogle Scholar
  13. Blumstein, H., & Schardt, S. (2009). Utility of radiography in suspected ventricular shunt malfunction. The Journal of Emergency Medicine, 36(1), 50–54. doi: 10.1016/j.jemermed.2007.06.044.CrossRefGoogle Scholar
  14. Bradley, B. P., Field, M., Healy, H., & Mogg, K. (2008). Do the affective properties of smoking-related cues influence attentional and approach biases in cigarette smokers? Journal of Psychopharmacology, 22(7), 737–745. doi: 10.1177/0269881107083844.CrossRefGoogle Scholar
  15. Brown, E. C., Tas, C., Kuzu, D., Esen-Danaci, A., Roelofs, K., & Brune, M. (2014). Social approach and avoidance behaviour for negative emotions is modulated by endogenous oxytocin and paranoia in schizophrenia. Psychiatry Research. doi: 10.1016/j.psychres.2014.06.038.Google Scholar
  16. Chen, M., & Bargh, J. A. (1999). Consequences of automatic evaluation: Immediate behavioral predispositions to approach or avoid the stimulus. Personality and Social Psychology Bulletin, 25(2), 215–224. doi: 10.1177/0146167299025002007.CrossRefGoogle Scholar
  17. Cousijn, J., Goudriaan, A. E., & Wiers, R. W. (2011). Reaching out towards cannabis: Approach-bias in heavy cannabis users predicts changes in cannabis use. [research support, non-U.S. Gov't]. Addiction, 106(9), 1667–1674. doi: 10.1111/j.1360-0443.2011.03475.x.CrossRefGoogle Scholar
  18. Cox, W. M., Fadardi, J. S., & Pothos, E. M. (2006). The addiction-stroop test: Theoretical considerations and procedural recommendations. [meta-analysis research support, non-U.S. Gov't]. Psychological Bulletin, 132(3), 443–476. doi: 10.1037/0033-2909.132.3.443.CrossRefGoogle Scholar
  19. Damasio, A. R. (1994). Descartes' error: Emotion, reason, and the human brain. Putnam.Google Scholar
  20. Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. Harcourt Brace and Co.Google Scholar
  21. Damasio, A. R. (2001). Fundamental feelings. Nature, 413, 781. doi: 10.1038/35101669.CrossRefGoogle Scholar
  22. De Houwer, J. (2006). What are implicit measures and why are we using them. In R. W. Wiers & A. W. Stacy (Eds.), The handbook of implicit cognition and addiction (pp. 11–28). Thousand Oaks: Sage.CrossRefGoogle Scholar
  23. Eberl, C., Wiers, R. W., Pawelczack, S., Rinck, M., Becker, E. S., & Lindenmeyer, J. (2013a). Approach bias modification in alcohol dependence: Do clinical effects replicate and for whom does it work best? [randomized controlled Trial research support, non-U.S. Gov't]. Developmental Cognitive Neuroscience, 4, 38–51. doi: 10.1016/j.dcn.2012.11.002.CrossRefGoogle Scholar
  24. Eberl, C., Wiers, R. W., Pawelczack, S., Rinck, M., Becker, E. S., & Lindenmeyer, J. (2013b). Implementation of approach bias re-training in Alcoholism-how many sessions are needed? Alcoholism, Clinical and Experimental Research. doi: 10.1111/acer.12281.Google Scholar
  25. Ernst, L. H., Plichta, M. M., Dresler, T., Zesewitz, A. K., Tupak, S. V., Haeussinger, F. B., et al. (2014). Prefrontal correlates of approach preferences for alcohol stimuli in alcohol dependence. Addiction Biology, 19(3), 497–508. doi: 10.1111/adb.12005.CrossRefGoogle Scholar
  26. Fadardi, J. S., & Cox, W. M. (2009). Reversing the sequence: Reducing alcohol consumption by overcoming alcohol attentional bias. [research support, non-U.S. Gov't]. Drug and Alcohol Dependence, 101(3), 137–145. doi: 10.1016/j.drugalcdep.2008.11.015.CrossRefGoogle Scholar
  27. Field, M., Duka, T., Tyler, E., & Schoenmakers, T. (2009). Attentional bias modification in tobacco smokers. [randomized controlled Trial research support, non-U.S. Gov't]. Nicotine & Tobacco Research, 11(7), 812–822. doi: 10.1093/ntr/ntp067.CrossRefGoogle Scholar
  28. Field, M., Mogg, K., Mann, B., Bennett, G. A., & Bradley, B. P. (2013). Attentional biases in abstinent alcoholics and their association with craving. Psychology of Addictive Behaviors, 27(1), 71–80. doi: 10.1037/A0029626.CrossRefGoogle Scholar
  29. Fodor, J. (1975). The language of thought. New York: Thomas Crowell.Google Scholar
  30. Fodor, J. (1981). Representations. Cambridge, MA: Bradford Books/MIT Press.Google Scholar
  31. Fodor, J. (1987). Psychosemantics. Cambridge, MA: Bradford Books.Google Scholar
  32. Fridland, E. (2015). Automatically minded. [article]. SYNTHESE, doi: 10.1007/s11229-014-0617-9.
  33. Gallagher, S. (2005). How the body shapes the mind. Oxford: Clarendon Press.CrossRefGoogle Scholar
  34. Gladwin, T. E., Figner, B., Crone, E. A., & Wiers, R. W. (2011). Addiction, adolescence, and the integration of control and motivation. Developmental Cognitive Neuroscience, 1(4), 364–376. doi: 10.1016/j.dcn.2011.06.008.CrossRefGoogle Scholar
  35. Gladwin, T. E., Wiers, C. E., & Wiers, R. W. (2016). Cognitive neuroscience of cognitive retraining for addiction medicine: From mediating mechanisms to questions of efficacy. Progress in Brain Research, 224, 323–344. doi: 10.1016/bs.pbr.2015.07.021.CrossRefGoogle Scholar
  36. Grubb, J. D., & Reed, C. L. (2002). Trunk orientation induces neglect-like lateral biases in covert attention. Psychological Science, 13(6), 553–556.CrossRefGoogle Scholar
  37. Haugeland, J. (1978). The nature and plausibility of cognitivism. Behavioral and Brain Sciences, 2, 215–226.CrossRefGoogle Scholar
  38. Haugeland, J. (1981). Mind design. Cambridge, MA: MIT Press/Bradford Books.Google Scholar
  39. Hayashi, T., Ko, J. H., Strafella, A. P., & Dagher, A. (2013). Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proceedings of the National Academy of Sciences of the United States of America. doi: 10.1073/pnas.1212185110.Google Scholar
  40. Heinz, A., Beck, A., Grusser, S. M., Grace, A. A., & Wrase, J. (2009). Identifying the neural circuitry of alcohol craving and relapse vulnerability. [review]. Addiction Biology, 14(1), 108–118. doi: 10.1111/j.1369-1600.2008.00136.x.CrossRefGoogle Scholar
  41. Heuer, K., Rinck, M., & Becker, E. S. (2007). Avoidance of emotional facial expressions in social anxiety: The approach-avoidance task. [research support, non-U.S. Gov't]. Behaviour Research and Therapy, 45(12), 2990–3001. doi: 10.1016/j.brat.2007.08.010.CrossRefGoogle Scholar
  42. Hurley, S. L. (1998). Consciousness in action. Cambridge: Harvard University Press.Google Scholar
  43. Hurley, S. L. (2006). Active perception and perceiving action: The shared circuits model. In T. Szabo Gendler & J. Hawthorne (Eds.), Perceptual experience. Oxford: Oxford University Press.Google Scholar
  44. Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. [research support, U.S. Gov't, P.H.S. Review]. Psychopharmacology, 146(4), 373–390.CrossRefGoogle Scholar
  45. Kalivas, P. W. (2004). Glutamate systems in cocaine addiction. [research support, U.S. Gov't, P.H.S. Review]. Current Opinion in Pharmacology, 4(1), 23–29. doi: 10.1016/j.coph.2003.11.002.CrossRefGoogle Scholar
  46. Kinsbourne, M. (1975). The mechanism of hemispheric control of the lateral gradient of attention. In PMA Rabbitt and S. Dornic (Eds), Attention and Performance V (pp. 81–97). London: Academic Press.Google Scholar
  47. Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. [research support, N.I.H., Extramural review]. Neuropsychopharmacology, 35(1), 217–238. doi: 10.1038/npp.2009.110.CrossRefGoogle Scholar
  48. Krieglmeyer, R., & Deutsch, R. (2010). Comparing measures of approach-avoidance behaviour: The manikin task vs. two versions of the joystick task. Cogn Emot, 24(5), 810–828. doi: 10.1080/02699930903047298.CrossRefGoogle Scholar
  49. Krieglmeyer, R., Deutsch, R., De Houwer, J., & De Raedt, R. (2010). Being moved: Valence activates approach-avoidance behavior independently of evaluation and approach-avoidance intentions. Psychological Science, 21(4), 607–613. doi: 10.1177/0956797610365131.CrossRefGoogle Scholar
  50. Lakoff, G., & Johnson, M. (1980a). Metaphors we live by. Chicago: University of Chicago Press.Google Scholar
  51. Lavender, T., & Hommel, B. (2007). Affect and action: Towards an event-coding account. Cogn Emot, 21(6), 1270–1296. doi: 10.1080/02699930701438152.CrossRefGoogle Scholar
  52. Lempert, H., & Kinsbourne, M. (1982). Effect of laterality of orientation on verbal memory. Neuropsychologia, 20, 211–214.CrossRefGoogle Scholar
  53. Loeber, S., Grosshans, M., Korucuoglu, O., Vollmert, C., Vollstadt-Klein, S., Schneider, S., et al. (2011). Impairment of inhibitory control in response to food-associated cues and attentional bias of obese participants and normal-weight controls. International Journal of Obesity. doi: 10.1038/ijo.2011.184.Google Scholar
  54. MacLeod, C., Rutherford, E., Campbell, L., Ebsworthy, G., & Holker, L. (2002). Selective attention and emotional vulnerability: Assessing the causal basis of their association through the experimental manipulation of attentional bias. [research support, non-U.S. Gov't]. Journal of Abnormal Psychology, 111(1), 107–123.CrossRefGoogle Scholar
  55. Mahler, S. V., & Berridge, K. C. (2009). Which cue to “want?” central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. [research support, N.I.H., Extramural]. The Journal of Neuroscience, 29(20), 6500–6513. doi: 10.1523/JNEUROSCI.3875-08.2009.CrossRefGoogle Scholar
  56. Markman, A. B., & Brendl, C. M. (2005). Constraining theories of embodied cognition. [research support, non-U.S. Gov't]. Psychological Science, 16(1), 6–10. doi: 10.1111/j.0956-7976.2005.00772.x.CrossRefGoogle Scholar
  57. Marr, D. (1983). Vision: A computational investigation into the human representation and processing of visual information. New York: W. H. Freeman and Company.Google Scholar
  58. Mogg, K., Bradley, B. P., Field, M., & De Houwer, J. (2003). Eye movements to smoking-related pictures in smokers: Relationship between attentional biases and implicit and explicit measures of stimulus valence. [research support, non-U.S. Gov’t]. Addiction, 98(6), 825–836.CrossRefGoogle Scholar
  59. Mogg, K., Field, M., & Bradley, B. P. (2005). Attentional and approach biases for smoking cues in smokers: An investigation of competing theoretical views of addiction. [research support, non-U.S. Gov't]. Psychopharmacology, 180(2), 333–341. doi: 10.1007/s00213-005-2158-x.CrossRefGoogle Scholar
  60. Nilsson, L.-G., & Craik, F. I. M. (1990). Additive and interactive effects in memory for subject-performed tasks. European Journal of Cognitive Psychology, 2(4), 305–324. doi: 10.1080/09541449008406210.CrossRefGoogle Scholar
  61. Noë, A. (2005). Action in perception. Cambridge: The MIT Press.Google Scholar
  62. Noë, A. (2009). Out of our heads: Why you are not your brain, and other lessons from the biology of consciousness. Hill and Wang.Google Scholar
  63. O'Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 883–917.CrossRefGoogle Scholar
  64. Park, S. Q., Kahnt, T., Beck, A., Cohen, M. X., Dolan, R. J., Wrase, J., et al. (2010). Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. [research support, non-U.S. Gov't]. The Journal of Neuroscience, 30(22), 7749–7753. doi: 10.1523/JNEUROSCI.5587-09.2010.CrossRefGoogle Scholar
  65. Paulus, M. P., & Stewart, J. L. (2014). Interoception and drug addiction. [research support, N.I.H., Extramural]. Neuropharmacology, 76 Pt B, 342-350, doi: 10.1016/j.neuropharm.2013.07.002.
  66. Peeters, M., Wiers, R. W., Monshouwer, K., van de Schoot, R., Janssen, T., & Vollebergh, W. A. (2012). Automatic processes in at-risk adolescents: The role of alcohol-approach tendencies and response inhibition in drinking behavior. [research support, non-U.S. Gov't]. Addiction, 107(11), 1939–1946. doi: 10.1111/j.1360-0443.2012.03948.x.CrossRefGoogle Scholar
  67. Phaf, R. H., Mohr, S. E., Rotteveel, M., & Wicherts, J. M. (2014). Approach, avoidance, and affect: A meta-analysis of approach-avoidance tendencies in manual reaction time tasks. Frontiers in Psychology, 5, 378. doi: 10.3389/fpsyg.2014.00378.CrossRefGoogle Scholar
  68. Prinz, J. J., & Barsalou, L. W. (2000). Steering a course for embodied representation. In E. Dietrich & A. Markman (Eds.), Cognitive dynamics: Conceptual change in humans and machines (pp. 51–77). NJ: Lawrence Erlbaum.Google Scholar
  69. Pulvermüller, F. (1999). Words in the brain's language. Behavioral and Brain Sciences, 22(2), 253–279.CrossRefGoogle Scholar
  70. Pulvermüller, F. (2008). Grounding language in the brain. In M. de Vega, A. Glenberg, & A. Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition. Oxford: Oxford University Press.Google Scholar
  71. Pylyshyn, Z. (1980). Computation and cognition: Issues in the foundation of cognitive science. The Behavioral and Brain Sciences, 3, 111–132.CrossRefGoogle Scholar
  72. Pylyshyn, Z. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge, MA: Bradford Books/MIT Press.Google Scholar
  73. Radke, S., Guths, F., Andre, J. A., Muller, B. W., & de Bruijn, E. R. (2014). In action or inaction? Social approach-avoidance tendencies in major depression. Psychiatry Res. doi: 10.1016/j.psychres.2014.07.011.Google Scholar
  74. Rinck, M., & Becker, E. S. (2007). Approach and avoidance in fear of spiders. [research support, non-U.S. Gov't]. Journal of Behavior Therapy and Experimental Psychiatry, 38(2), 105–120. doi: 10.1016/j.jbtep.2006.10.001.CrossRefGoogle Scholar
  75. Robbins, T. W., & Everitt, B. J. (1999). Drug addiction: Bad habits add up. [news]. Nature, 398(6728), 567–570. doi: 10.1038/19208.CrossRefGoogle Scholar
  76. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. [research support, U.S. Gov’t, P.H.S. Review]. Brain Research. Brain Research Reviews, 18(3), 247–291.CrossRefGoogle Scholar
  77. Robinson, T. E., & Berridge, K. C. (2003). Addiction. [research support, U.S. Gov’t, non-P.H.S. Research support, U.S. Gov't, P.H.S. Review]. Annual Review of Psychology, 54, 25–53. doi: 10.1146/annurev.psych.54.101601.145237.CrossRefGoogle Scholar
  78. Roelofs, K., Minelli, A., Mars, R. B., van Peer, J., & Toni, I. (2009). On the neural control of social emotional behavior. [research support, non-U.S. Gov't]. Social Cognitive and Affective Neuroscience, 4(1), 50–58. doi: 10.1093/scan/nsn036.CrossRefGoogle Scholar
  79. Schoenmakers, T., Wiers, R. W., Jones, B. T., Bruce, G., & Jansen, A. T. (2007). Attentional re-training decreases attentional bias in heavy drinkers without generalization. [randomized controlled Trial research support, non-U.S. Gov’t]. Addiction, 102(3), 399–405. doi: 10.1111/j.1360-0443.2006.01718.x.CrossRefGoogle Scholar
  80. Schoenmakers, T. M., de Bruin, M., Lux, I. F., Goertz, A. G., Van Kerkhof, D. H., & Wiers, R. W. (2010). Clinical effectiveness of attentional bias modification training in abstinent alcoholic patients. [multicenter study randomized controlled Trial research support, non-U.S. Gov’t]. Drug and Alcohol Dependence, 109(1–3), 30–36. doi: 10.1016/j.drugalcdep.2009.11.022.CrossRefGoogle Scholar
  81. Sidhu, D. M., Kwan, R., Pexman, P. M., & Siakaluk, P. D. (2014). Effects of relative embodiment in lexical and semantic processing of verbs. Acta Psychologica, 149, 32–39. doi: 10.1016/j.actpsy.2014.02.009.CrossRefGoogle Scholar
  82. Sidhu, D. M., & Pexman, P. M. (2016). Is moving more memorable than proving? Effects of embodiment and imagined enactment on verb memory. Frontiers in Psychology, 7, 1010. doi: 10.3389/fpsyg.2016.01010.Google Scholar
  83. Siegel, S. (1999). Drug anticipation and drug addiction. The 1998 H. David Archibald lecture. [lectures research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.] Addiction, 94(8), 1113–1124.CrossRefGoogle Scholar
  84. Stanley, D. A., Sokol-Hessner, P., Banaji, M. R., & Phelps, E. A. (2011). Implicit race attitudes predict trustworthiness judgments and economic trust decisions. [research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7710–7715. doi: 10.1073/pnas.1014345108.CrossRefGoogle Scholar
  85. Strack, F., Martin, L. L., & Stepper, S. (1988). Inhibiting and facilitating conditions of the human smile: A nonobtrusive test of the facial feedback hypothesis. [research support, non-U.S. Gov’t research support, U.S. Gov't, P.H.S.] Journal of Personality and Social Psychology, 54(5), 768–777.CrossRefGoogle Scholar
  86. Tiffany, S. T. (1990). A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes. [review]. Psychological Review, 97(2), 147–168.CrossRefGoogle Scholar
  87. Turing, A. (1936). On computable numbers. Proceedings of the London Mathematical Society, 24, 230–265.Google Scholar
  88. Tversky, B. (2009). Spatial cognition: Embodied and situated. In M. Aydede & P. Robbins (Eds.), The Cambridge handbook of situated cognition (pp. 201–217). Cambridge: Cambridge University Press.Google Scholar
  89. van Dantzig, S., Zeelenberg, R., & Pecher, D. (2009). Unconstraining theories of embodied cognition. Journal of Experimental Social Psychology, 45(2), 345–351. doi: 10.1016/j.jesp.2008.11.001.
  90. Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge: MIT Press.Google Scholar
  91. Veenstra, E. M., & de Jong, P. J. (2011). Reduced automatic motivational orientation towards food in restricting anorexia nervosa. Journal of Abnormal Psychology, 120(3), 708–718. doi: 10.1037/a0023926.CrossRefGoogle Scholar
  92. Veling, H., & Aarts, H. (2009). Putting behavior on hold decreases reward value of need-instrumental objects outside of awareness. Journal of Experimental Social Psychology, 45(4), 1020–1023. doi: 10.1016/j.jesp.2009.04.020.CrossRefGoogle Scholar
  93. Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., Telang, F., & Baler, R. (2010). Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit. [review]. BioEssays, 32(9), 748–755. doi: 10.1002/bies.201000042.CrossRefGoogle Scholar
  94. Volman, I., Toni, I., Verhagen, L., & Roelofs, K. (2011). Endogenous testosterone modulates prefrontal-amygdala connectivity during social emotional behavior. [comparative study research support, non-U.S. Gov't]. Cerebral Cortex, 21(10), 2282–2290. doi: 10.1093/cercor/bhr001.CrossRefGoogle Scholar
  95. Watson, P., de Wit, S., Cousijn, J., Hommel, B., & Wiers, R. W. (2013). Motivational mechanisms underlying the approach bias to cigarettes. Journal of Experimental Psychology, 4, 250–262.Google Scholar
  96. Watson, P., de Wit, S., Hommel, B., & Wiers, R. W. (2012). Motivational mechanisms and outcome expectancies underlying the approach bias toward addictive substances. Frontiers in Psychology, 3, 440. doi: 10.3389/fpsyg.2012.00440.Google Scholar
  97. Wiers, C. E., & Heinz, A. (2015). Neurobiology of alcohol craving and relapse prediction: Implications for diagnosis and treatment. In S. J. Wilson (Ed.), The Wiley handbook on the cognitive neuroscience of addiction (Vol. 219). Chichester: Wiley Blackwell.Google Scholar
  98. Wiers, C. E., Ludwig, V. U., Gladwin, T. E., Park, S. Q., Heinz, A., Wiers, R. W., et al. (2015a). Effects of cognitive bias modification training on neural signatures of alcohol approach tendencies in male alcohol-dependent patients. Addiction Biology, 20(5), 990–999. doi: 10.1111/adb.12221.CrossRefGoogle Scholar
  99. Wiers, C. E., Stelzel, C., Gladwin, T. E., Park, S. Q., Pawelczack, S., Gawron, C. K., et al. (2015b). Effects of cognitive bias modification training on neural alcohol cue reactivity in alcohol dependence. The American Journal of Psychiatry, 172(4), 335–343. doi: 10.1176/appi.ajp.2014.13111495.CrossRefGoogle Scholar
  100. Wiers, C. E., Stelzel, C., Park, S. Q., Gawron, C. K., Ludwig, V. U., Gutwinski, S., et al. (2014). Neural correlates of alcohol-approach bias in alcohol addiction: The spirit is willing but the flesh is weak for spirits. Neuropsychopharmacology, 39(3), 688–697. doi: 10.1038/npp.2013.252.CrossRefGoogle Scholar
  101. Wiers, C. E., & Wiers, R. W. (2016). Imaging the neural effects of cognitive bias modification training. NeuroImage. doi: 10.1016/j.neuroimage.2016.07.041.Google Scholar
  102. Wiers, R. W., Bartholow, B. D., van den Wildenberg, E., Thush, C., Engels, R. C., Sher, K. J., et al. (2007). Automatic and controlled processes and the development of addictive behaviors in adolescents: A review and a model. [research support, N.I.H., Extramural research support, non-U.S. Gov’t review]. Pharmacology, Biochemistry, and Behavior, 86(2), 263–283. doi: 10.1016/j.pbb.2006.09.021.CrossRefGoogle Scholar
  103. Wiers, R. W., Eberl, C., Rinck, M., Becker, E. S., & Lindenmeyer, J. (2011). Retraining automatic action tendencies changes alcoholic patients' approach bias for alcohol and improves treatment outcome. [randomized controlled Trial research support, non-U.S. Gov't]. Psychological Science, 22(4), 490–497. doi: 10.1177/0956797611400615.CrossRefGoogle Scholar
  104. Wiers, C. E., Kuhn, S., Javadi, A. H., Korucuoglu, O., Wiers, R. W., Walter, H., et al. (2013a). Automatic approach bias towards smoking cues is present in smokers but not in ex-smokers. [research support, non-U.S. Gov’t]. Psychopharmacology, 229(1), 187–197. doi: 10.1007/s00213-013-3098-5.
  105. Wiers, R. W., Gladwin, T. E., Hofmann, W., Salemink, E., & Ridderinkhof, K. R. (2013b). Cognitive bias modification and cognitive control training in addiction and related psychopathology: Mechanisms, clinical perspectives, and ways forward. Clinical Psychological Science, 1(2), 192–212.CrossRefGoogle Scholar
  106. Wiers, R. W., Gladwin, T. E., & Rinck, M. (2013c). Should we train alcohol-dependent patients to avoid alcohol? Frontiers in Psychiatry, 4, 33. doi: 10.3389/fpsyt.2013.00033.CrossRefGoogle Scholar
  107. Wiers, R. W., Rinck, M., Dictus, M., & van den Wildenberg, E. (2009). Relatively strong automatic appetitive action-tendencies in male carriers of the OPRM1 G-allele. [research support, non-U.S. Gov't]. Genes, Brain, and Behavior, 8(1), 101–106. doi: 10.1111/j.1601-183X.2008.00454.x.CrossRefGoogle Scholar
  108. Wiers, R. W., Rinck, M., Kordts, R., Houben, K., & Strack, F. (2010). Retraining automatic action-tendencies to approach alcohol in hazardous drinkers. [randomized controlled Trial research support, non-U.S. Gov’t]. Addiction, 105(2), 279–287. doi: 10.1111/j.1360-0443.2009.02775.x.CrossRefGoogle Scholar
  109. Zhou, Y., Li, X., Zhang, M., Zhang, F., Zhu, C., & Shen, M. (2012). Behavioural approach tendencies to heroin-related stimuli in abstinent heroin abusers. [research support, non-U.S. Gov't]. Psychopharmacology, 221(1), 171–176. doi: 10.1007/s00213-011-2557-0.CrossRefGoogle Scholar
  110. Zimmer, H. D., & Engelkamp, J. (1999). Levels-of-processing effects in subject-performed tasks. Memory & Cognition, 27(5), 907–914.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhilosophyKing’s College LondonStrand LondonUK
  2. 2.Berlin School of Mind and BrainHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations