Phenomenology and the Cognitive Sciences

, Volume 15, Issue 3, pp 315–335 | Cite as

Distrusting the present

  • Jakob Hohwy
  • Bryan Paton
  • Colin Palmer


We use the hierarchical nature of Bayesian perceptual inference to explain a fundamental aspect of the temporality of experience, namely the phenomenology of temporal flow. The explanation says that the sense of temporal flow in conscious perception stems from probabilistic inference that the present cannot be trusted. The account begins by describing hierarchical inference under the notion of prediction error minimization, and exemplifies distrust of the present within bistable visual perception and action initiation. Distrust of the present is then discussed in relation to previous research on temporal phenomenology. Finally, we discuss how there may be individual differences in the experience of temporal flow, in particular along the autism spectrum. The resulting view is that the sense of temporal flow in conscious perception results from an internal, inferential process.


Temporal phenomenology Specious present Prediction error minimization Hierarchical Bayesian inference Autism Binocular rivalry Action Perception 


  1. Allman, M. J. (2011). Deficits in temporal processing associated with autistic disorder. Frontiers in Integrative Neuroscience, 5(2), 1–2.Google Scholar
  2. Allman, M. J., & Meck, W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135(3), 656–677.CrossRefGoogle Scholar
  3. Allman, M. J., DeLeon, I. G., & Wearden, J. H. (2011). Psychophysical assessment of timing in individuals with autism. American Journal on Intellectual and Developmental Disabilities, 116(2), 165–178.CrossRefGoogle Scholar
  4. Andersen, H. K., & Grush, R. (2009). A brief history of time-consciousness: Historical precursors to james and husserl. Journal of the History of Philosophy, 47(2), 277–307.CrossRefGoogle Scholar
  5. Block, R. A., Hancock, P. A., & Zakay, D. (2010). How cognitive load affects duration judgments: a meta-analytic review. Acta Psychologica, 134(3), 330–343.CrossRefGoogle Scholar
  6. Boucher, J., Pons, F., Lind, S., & Williams, D. (2007). Temporal cognition in children with autistic spectrum disorders: tests of diachronic thinking. Journal of Autism and Developmental Disorders, 37(8), 1413–1429.CrossRefGoogle Scholar
  7. Breakspear, M. (2001). Perception of odors by a nonlinear model of the olfactory bulb. International Journal of Neural Systems, 11, 101–124.CrossRefGoogle Scholar
  8. Brock, J., Brown, C. M., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14(02), 209–224.CrossRefGoogle Scholar
  9. Brown, H., et al. (2013). Active inference, sensory attenuation and illusions. Cognitive Processing, 14(4), 411–427.CrossRefGoogle Scholar
  10. Cascio, C. J., et al. (2012). The rubber hand illusion in children with autism spectrum disorders: Delayed influence of combined tactile and visual input on proprioception. Autism, 16, 406–419.Google Scholar
  11. Clark, A. (2012). Dreaming the whole cat: generative models, predictive processing, and the enactivist conception of perceptual experience. Mind, 121(483), 753–771.CrossRefGoogle Scholar
  12. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.CrossRefGoogle Scholar
  13. Conant, R. C., & Ashby, W. R. (1970). Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1(2), 89–97.CrossRefGoogle Scholar
  14. Enticott, P., et al. (2013). Interpersonal motor resonance in autism spectrum disorder: Evidence against a global ëmirror systemí deficit. Frontiers in Human Neuroscience 7.Google Scholar
  15. Feldman, H., & Friston, K. (2010). Attention, uncertainty and free-energy. Frontiers in Human Neuroscience, 4(215), 1–23.Google Scholar
  16. Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.CrossRefGoogle Scholar
  17. Friston, K. (2013). Life as we know it. Journal of The Royal Society Interface 10(86).Google Scholar
  18. Friston, K., Stephan, K., Li, B., & Daunizeau, J. (2010). Generalised filtering. Mathematical Problems in Engineering, 2010, 1–34.CrossRefGoogle Scholar
  19. Friston, K., Adams, R., Perrinet, L., Breakspear, M. (2012a). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3(151), 1–20.Google Scholar
  20. Friston, K., Breakspear, M., Deco, G. (2012b). Perception and self-organised instability. Frontiers in Computational Neuroscience, 6(44), 1–19.Google Scholar
  21. Friston, K., Thornton, C., Clark, A. (2012c). Free-energy minimization and the dark room problem. Frontiers in Psychology, 3(130), 1–7.Google Scholar
  22. Friston, K. J., Lawson, R., & Frith, C. D. (2013). On hyperpriors and hypopriors: comment on Pellicano and Burr. Trends in Cognitive Sciences, 17(1), 1.Google Scholar
  23. Friston, K., Breakspear, M., & Deco, G. (2014). Critical slowing and perception. In D. Plenz et al. (Eds.), Criticality in neural systems (pp. 191–226). Weinheim: Wiley.CrossRefGoogle Scholar
  24. Friston, K., et al. (2015). Active inference and epistemic value. Cognitive Neuroscience 1-28. doi: 10.1080/17588928.2015.1020053
  25. Frith, C. D. (2007). Making up the mind: How the brain creates our mental world. Oxford: Blackwell Publishing.Google Scholar
  26. Gregory, R. L. (1996). What do qualia do? Perception, 25(4), 377–379.CrossRefGoogle Scholar
  27. Grush, R. (2004). The emulation theory of representation: motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–442.Google Scholar
  28. Grush, R. (2005). Brain time and phenomenological time. Philosophy and the neurosciences. A. Brooks et al., Cambridge.Google Scholar
  29. Grush, R. (2006). How to, and how not to, bridge computational cognitive neuroscience and Husserlian phenomenology of time consciousness. Synthese, 153(3), 417–450.CrossRefGoogle Scholar
  30. Grush, R. (2007). Skill theory v2.0: dispositions, emulation, and spatial perception. Synthese, 159(3), 389–416.CrossRefGoogle Scholar
  31. Grush, R. (2008). Temporal representation and dynamics. New Ideas in Psychology, 26(2), 146–157.CrossRefGoogle Scholar
  32. Happé, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.CrossRefGoogle Scholar
  33. Helmholtz, H. V. (1867). Handbuch der physiologishen optik. Leipzig: Leopold Voss.Google Scholar
  34. Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology 3(96), 1–14.Google Scholar
  35. Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
  36. Hohwy, J. (2014). The self-evidencing brain. Nous. doi: 10.1111/nous.12062.
  37. Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: an epistemological review. Cognition, 108(3), 687–701.CrossRefGoogle Scholar
  38. James, W. (1890). The principles of psychology. New York: Holt.CrossRefGoogle Scholar
  39. Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55(1), 271–304.CrossRefGoogle Scholar
  40. Kwakye, L. D., et al. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4(129), 1–11.Google Scholar
  41. Lawson, R. P., Rees, G., Friston, K. J. (2014). An aberrant precision account of autism. Frontiers in Human Neuroscience, 8(302). doi: 10.3389/fnhum.2014.00302.
  42. Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness potential): the unconscious initiation of a freely voluntary act. Brain, 106, 623–642.CrossRefGoogle Scholar
  43. Mathys, C., et al. (2012). Computational modeling of perceptual inference: a hierarchical Bayesian approach that allows for individual and contextual differences in weighting of input. International Journal of Psychophysiology, 85(3), 317–318.CrossRefGoogle Scholar
  44. Mathys, C. D., et al. (2014). Uncertainty in perception and the hierarchical gaussian filter. Frontiers in Human Neuroscience, 8(825), 1–24.Google Scholar
  45. Merleau-Ponty, M. (1962). Phenomenology of perception. Oxford: RoutledgeGoogle Scholar
  46. Metzinger, T. (2004). Being no one: The self-model theory of subjectivity. MA: MIT Press.Google Scholar
  47. Mumford, D. (1992). On the computational architecture of the neocortex. Ii. The role of cortico-cortical loops. Biological Cybernetics, 66, 241–251.CrossRefGoogle Scholar
  48. Palmer, C. J., Paton, B., Hohwy, J., & Enticott, P. G. (2013). Movement under uncertainty: the effects of the rubber-hand illusion vary along the nonclinical autism spectrum. Neuropsychologia, 51(10), 1942–1951.CrossRefGoogle Scholar
  49. Palmer, C. J., Paton, B., Kirkowski, M., Enticott, P., Hohwy, J. (2015). Context sensitivity in action decreases along the autism spectrum: A predictive processing perspective. Proceedings of the Royal Society B: Biological Sciences 282(1802). doi: 10.1098/rspb.2014.1557.
  50. Palmer, C. J., Seth, A. K., & Hohwy, J. (2015b). The felt presence of other minds: predictive processing, counterfactual predictions, and mentalising in autism. Consciousness and Cognition. doi: 10.1016/j.concog.2015.04.007.Google Scholar
  51. Paton, B., Hohwy, J., & Enticott, P. (2011). The rubber hand illusion reveals proprioceptive and sensorimotor differences in autism spectrum disorders. Journal of Autism and Developmental Disorders, 42(9), 1870–1883.CrossRefGoogle Scholar
  52. Pellicano, E., & Burr, D. (2012). When the world becomes too real: A bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504–510.Google Scholar
  53. Phillips, I. (2012). Attention to the passage of time. Philosophical Perspectives, 26, 277–308.CrossRefGoogle Scholar
  54. Pockett, S. (2003). How long is “now”? Phenomenology and the specious present. Phenomenology and the Cognitive Sciences, 2(1), 55–68.CrossRefGoogle Scholar
  55. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning:variations in the effectiveness of reinforcement and non reinforcement. In A. H. Black & W.F. Prokasy (Eds.), Classical conditioning II: current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.Google Scholar
  56. Rinehart, N. J., et al. (2006). Movement-related potentials in high-functioning autism and asperger’s disorder. Developmental Medicine and Child Neurology, 48(4), 272–277.CrossRefGoogle Scholar
  57. Robertson, C. E., et al. (2013). Slower rate of binocular rivalry in autism. The Journal of Neuroscience, 33(43), 16983–16991.CrossRefGoogle Scholar
  58. Said, C. P., et al. (2013). Normal binocular rivalry in autism: implications for the excitation/inhibition imbalance hypothesis. Vision Research, 77, 59–66.CrossRefGoogle Scholar
  59. Seth, A. K. (2014). A predictive processing theory of sensorimotor contingencies: explaining the puzzle of perceptual presence and its absence in synesthesia. Cognitive Neuroscience, 5(2), 97–118.CrossRefGoogle Scholar
  60. Van de Cruys, S., et al. (2013). Weak priors versus overfitting of predictions in autism: Reply to Pellicano and Burr. i-Perception, 4(2):95–97.Google Scholar
  61. Van Doorn, G., Hohwy, J., & Symmons, M. (2014). Can you tickle yourself if you swap bodies with someone else? Consciousness and Cognition, 23, 1–11.CrossRefGoogle Scholar
  62. Van Doorn, G., Paton, B., Howell, J., & Hohwy, J. (2015). Attenuated self-tickle sensation even under trajectory perturbation. Consciousness and Cognition, 36, 147–153.CrossRefGoogle Scholar
  63. Wallace, G. L., & Happé, F. (2008). Time perception in autism spectrum disorders. Research in Autism Spectrum Disorders, 2(3), 447–455.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Cognition & Philosophy LabMonash UniversityClaytonAustralia
  2. 2.ARC Centre of Excellence for Integrative Brain FunctionClaytonAustralia
  3. 3.School of Psychology, Monash UniversityClaytonAustralia

Personalised recommendations