Skip to main content
Log in

Bibliometric analysis of research trends and active research areas in chimeric antigen receptor T cell therapy for hematologic malignancies

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background

In the past decade, chimeric antigen receptor (CAR) T-cells have successfully treated cancers, especially hematologic malignancies. Although many articles have been published on CAR T-cell therapy for hematologic malignancies, bibliometric analysis remains unexplored.

Aim

This study aimed to investigate and analyze existing trends and active research areas on CAR T-cell therapy for hematologic malignancies, providing novel perspectives for clinical decision-making and scientific research.

Method

From 2000 to 2023, the Web of Science Core Collection was searched for articles published on CAR T-cells for the treatment of hematologic malignancies. Comprehensive visual analyses of annual publication, country, institutions, authors, co-cited references, and keywords were performed using CiteSpace software and VOSviewer.

Results

A total of 2,451 articles on CAR T-cells were published to treat hematologic malignancies from 01 January 2000 to 31 August 2023. The United States, China, and Germany were the top three nations in publications. In the keyword analysis, “immunotherapy” and “chimeric antigen receptor” were used most frequently. Moreover, the yellow node, which included terms such as “chimeric antigen receptor T cells,” “efficacy,” “CAR T-cell therapy,” “toxicity,” “CAR-NK,” and “tumor microenvironment” were most active research areas.

Conclusion

This study provided a comprehensive analysis of publications on CAR T-cell therapy for hematologic malignancies from 2000 to 2023. The findings provide current trends and potential hotspots in CAR T-cell therapy for hematologic malignancies and contribute valuable direction for future studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li T, Yang Z, Jiang S, et al. Melatonin: does it have utility in the treatment of haematological Neoplasms? Br J Pharmacol. 2018;175(16):3251–62. https://doi.org/10.1111/bph.13966.

    Article  CAS  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  3. Zhu Y, Yang Q, Yang Q, et al. Intestinal microbes and hematological malignancies. Cancers (Basel). 2023;15(8):2284. https://doi.org/10.3390/cancers15082284.

    Article  CAS  PubMed  Google Scholar 

  4. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in Leukemia. N Engl J Med. 2014;371(16):1507–17. https://doi.org/10.1056/NEJMoa1407222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and Young adults with B-cell lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48. https://doi.org/10.1056/NEJMoa1709866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCreedy BJ, Senyukov VV, Nguyen KT. Off the shelf T cell therapies for hematologic malignancies. Best Pract Res Clin Haematol. 2018;31(2):166–75. https://doi.org/10.1016/j.beha.2018.03.001.

    Article  PubMed  Google Scholar 

  7. Andrea AE, Chiron A, Bessoles S, et al. Engineering next-generation CAR-T cells for better toxicity management. Int J Mol Sci. 2020;21(22):8620. https://doi.org/10.3390/ijms21228620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45–55. https://doi.org/10.1016/j.blre.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang YB, Xu D, Bai L, et al. A review of non-invasive drug delivery through respiratory routes. Pharmaceutics. 2022;14(9):1974. https://doi.org/10.3390/pharmaceutics14091974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ou Z, Qiu L, Rong H, et al. Bibliometric analysis of chimeric antigen receptor-based immunotherapy in cancers from 2001 to 2021. Front Immunol. 2022;13:822004. https://doi.org/10.3389/fimmu.2022.822004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seo B, Kim S, Kim J. The 100 most influential studies in chimeric antigen receptor T-cell: a bibliometric analysis. Front Med Technol. 2020;2:3. https://doi.org/10.3389/fmedt.2020.00003.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Archambault É, Campbell D, Gingras Y, et al. Comparing of science bibliometric statistics obtained from the web and Scopus. J Am Soc Inf Sci Technol. 2009;60(7):1320–6. https://doi.org/10.1002/asi.21062.

    Article  Google Scholar 

  13. June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5. https://doi.org/10.1126/science.aar6711.

    Article  CAS  PubMed  Google Scholar 

  14. Lichtman EI, Du H, Shou P, et al. Preclinical evaluation of B7-H3-specific chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Clin Cancer Res. 2021;27(11):3141–53. https://doi.org/10.1158/1078-0432.Ccr-20-2540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hombach A, Barden M, Hannappel L, et al. IL12 integrated into the CAR exodomain converts CD8(+) T cells to poly-functional NK-like cells with superior killing of antigen-loss tumors. Mol Ther. 2022;30(2):593–605. https://doi.org/10.1016/j.ymthe.2021.10.011.

    Article  CAS  PubMed  Google Scholar 

  16. Wei N, Xu Y, Wang H, et al. Bibliometric and visual analysis of cardiovascular diseases and COVID-19 research. Front Public Health. 2022;10:1022810. https://doi.org/10.3389/fpubh.2022.1022810.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. https://doi.org/10.1056/NEJMoa1708566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. https://doi.org/10.1056/NEJMoa1215134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86(24):10024–8. https://doi.org/10.1073/pnas.86.24.10024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the Tumor stroma. Immunol Rev. 2014;257(1):83–90. https://doi.org/10.1111/imr.12125.

    Article  CAS  PubMed  Google Scholar 

  22. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  23. Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci USA. 2004;101(Suppl 1):5303–10. https://doi.org/10.1073/pnas.0307513100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. https://doi.org/10.1056/NEJMoa1804980.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Bi X, Gergis M, et al. Allogeneic chimeric antigen receptor T cells for hematologic malignancies. Hematol Oncol Stem Cell Ther. 2022;15(3):112–6. https://doi.org/10.56875/2589-0646.1030.

    Article  CAS  PubMed  Google Scholar 

  26. Singh N, Shi J, June CH, et al. Genome-Editing technologies in adoptive T cell immunotherapy for Cancer. Curr Hematol Malig Rep. 2017;12(6):522–9. https://doi.org/10.1007/s11899-017-0417-7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Abbasi S, Totmaj MA, Abbasi M, et al. Chimeric antigen receptor T (CAR-T) cells: novel cell therapy for hematological malignancies. Cancer Med. 2023;12(7):7844–58. https://doi.org/10.1002/cam4.5551.

    Article  CAS  PubMed  Google Scholar 

  28. Sharma AR, Lee YH, Bat-Ulzii A, et al. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnol. 2022;20(1):501. https://doi.org/10.1186/s12951-022-01650-z.

    Article  Google Scholar 

  29. Barros LRC, Couto SCF, da Silva Santurio D, et al. Systematic review of available CAR-T cell trials around the world. Cancers (Basel). 2022;14:2667. https://doi.org/10.3390/cancers14112667.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mougiakakos D, Krönke G, Völkl S, et al. CD19-Targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med. 2021;385(6):567–9. https://doi.org/10.1056/NEJMc2107725.

    Article  PubMed  Google Scholar 

  31. Rurik JG, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375(6576):91–6. https://doi.org/10.1126/science.abm0594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amini L, Silbert SK, Maude SL, et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol. 2022;19(5):342–55. https://doi.org/10.1038/s41571-022-00607-3.

    Article  PubMed  Google Scholar 

  33. Perez-Amill L, Marzal B, Urbano-Ispizua A, et al. CAR-T cell therapy: a door is open to find innumerable possibilities of treatments for Cancer patients. Turk J Haematol. 2018;35(4):217–28. https://doi.org/10.4274/tjh.2018.0196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimabukuro-Vornhagen A, Böll B, Schellongowski P, et al. Critical care management of chimeric antigen receptor T-cell therapy recipients. CA Cancer J Clin. 2022;72(1):78–93. https://doi.org/10.3322/caac.21702.

    Article  PubMed  Google Scholar 

  35. Daher M, Rezvani K. Outlook for new CAR-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer. Cancer Discov. 2021;11(1):45–58. https://doi.org/10.1158/2159-8290.Cd-20-0556.

    Article  CAS  PubMed  Google Scholar 

  36. Ng YY, Du Z, Zhang X, et al. CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model. Cancer Gene Ther. 2022;29(5):475–83. https://doi.org/10.1038/s41417-021-00365-x.

    Article  CAS  PubMed  Google Scholar 

  37. Du Z, Ng YY, Zha S, et al. piggyBac system to co-express NKG2D CAR and IL-15 to augment the in vivo persistence and anti-AML activity of human peripheral blood NK cells. Mol Ther Methods Clin Dev. 2021;23:582–96. https://doi.org/10.1016/j.omtm.2021.10.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang X, Yang L, Li Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu C, Bing Z, Bi Z, et al. Top-100 most cited publications concerning Network pharmacology: a bibliometric analysis. Evid Based Complement Altern Med. 2019;2019:1704816. https://doi.org/10.1155/2019/1704816.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwen Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Deng, L., Lu, H. et al. Bibliometric analysis of research trends and active research areas in chimeric antigen receptor T cell therapy for hematologic malignancies. Int J Clin Pharm 46, 186–194 (2024). https://doi.org/10.1007/s11096-023-01670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11096-023-01670-1

Keywords

Navigation