Skip to main content

Advertisement

Log in

A pharmacovigilance study of the association between tetracyclines and hepatotoxicity based on Food and Drug Administration adverse event reporting system data

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background While tetracycline antibiotics are commonly prescribed in practice, the risk of drug-induced liver injury (DILI) remains controversial. Aim To evaluate the association of DILI with tetracycline antibiotics. Method All DILI cases of tetracycline antibiotics as primary suspected drugs were extracted from the US Food and Drug Administration adverse event reporting system (FAERS). The outcomes included severe DILI, hepatocellular injury, cholestatic injury, and liver failure. Disproportionality analyses were conducted by estimating the reporting odds ratio (ROR) and the information component (IC). Results A total of 1,435 liver injury cases associated with tetracycline antibiotics were identified. The DILI signal was detected in tigecycline, minocycline, and doxycycline. The RORs and the 95% confidence intervals (95% CI) of tigecycline, minocycline, and doxycycline were (ROR 5.85, 95% CI 4.96–6.91), (ROR 6.4, 95% CI 5.76–7.11), and (ROR 2.07, 95% CI 1.86–2.31), respectively. Compared to minocycline (ROR 5.5, 95% CI 4.94–6.12; IC 2.35, 95% CI 1.98–2.68) and doxycycline (ROR 1.91, 95% CI 1.71–2.12; IC 0.91, 95% CI 0.55–1.26), tigecycline showed a stronger association with hepatocellular injury (ROR 7.11, 95% CI 6.13–8.23; IC 2.68, 95% CI 2.16–3.13). Tigecycline also showed a stronger association with cholestatic injury (ROR 12.16, 95% CI 10.13–14.61; IC 3.51, 95% CI 2.79–4) than minocycline (ROR 3.23, 95% CI 2.59–4.04; IC 1.67, 95% CI 0.9–2.37) or doxycycline (ROR 2.86, 95% CI 2.47–3.31; IC 1.5, 95% CI 1–1.97). Tigecycline (ROR 6.56, 95% CI 4.57–9.41; IC 2.69, 95% CI 1.28–3.64) and minocycline (ROR 4.22, 95% CI 3.14–5.66; IC 2.06, 95% CI 1–2.93) showed a significant association with liver failure. Conclusion The data mining of FAERS suggested an association between DILI and tigecycline, minocycline, and doxycycline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leise M, Poterucha JJ, Talwalkar JA. Drug-induced liver injury. Mayo Clin Proc. 2014;89(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  2. Sgro C, Clinard F, Ouazir K, et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology. 2002;36(2):451–5.

    Article  PubMed  Google Scholar 

  3. Björnsson ES, Bergmann OM, Björnsson HK, et al. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology. 2013;144(7):1419–25 (25.e1-3; quiz e19-20).

    Article  PubMed  CAS  Google Scholar 

  4. Shen T, Liu Y, Shang J, et al. Incidence and etiology of drug-induced liver injury in mainland China. Gastroenterology. 2019;156(8):2230-41.e11.

    Article  PubMed  Google Scholar 

  5. Björnsson ES. Hepatotoxicity by drugs: the most common implicated agents. Int J Mol Sci. 2016;17(2):224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chalasani N, Bonkovsky HL, Fontana R, et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology. 2015;148(7):1340-52.e7.

    Article  PubMed  Google Scholar 

  7. Yin YD, Wang R, Zhuo C, et al. Macrolide-resistant Mycoplasma pneumoniae prevalence and clinical aspects in adult patients with community-acquired pneumonia in China: a prospective multicenter surveillance study. J Thorac Dis. 2017;9(10):3774–81.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Qi X, Yin Y, et al. Effects of minocycline on macrolide-unresponsive Mycoplasma pneumoniae pneumonia in children: a single-center retrospective study. Transl Pediatr. 2021;10(11):2997–3004.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee H, Choi YY, Sohn YJ, et al. Clinical efficacy of doxycycline for treatment of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. Antibiotics (Basel). 2021;10(2):192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zaenglein AL, Shamban A, Webster G, et al. A phase IV, open-label study evaluating the use of triple-combination therapy with minocycline HCl extended-release tablets, a topical antibiotic/retinoid preparation and benzoyl peroxide in patients with moderate to severe acne vulgaris. J Drugs Dermatol. 2013;12(6):619–25.

    CAS  PubMed  Google Scholar 

  11. Bienenfeld A, Nagler AR, Orlow SJ. Oral antibacterial therapy for acne vulgaris: an evidence-based review. Am J Clin Dermatol. 2017;18(4):469–90.

    Article  PubMed  Google Scholar 

  12. Eichenfield DZ, Sprague J, Eichenfield LF. Management of acne vulgaris: a review. JAMA-J Am Med Assoc. 2021;326(20):2055–67.

    Article  Google Scholar 

  13. Stultz JS, Eiland LS. Doxycycline and tooth discoloration in children: changing of recommendations based on evidence of safety. Ann Pharmacother. 2019;53(11):1162–6.

    Article  CAS  PubMed  Google Scholar 

  14. Zhanel GG, Homenuik K, Nichol K, et al. The glycylcyclines: a comparative review with the tetracyclines. Drugs. 2004;64(1):63.

    Article  CAS  PubMed  Google Scholar 

  15. Karakonstantis S, Kritsotakis EI, Gikas A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection. 2020;48(6):835–51.

    Article  CAS  PubMed  Google Scholar 

  16. Mei H, Yang T, Wang J, et al. Efficacy and safety of tigecycline in treatment of pneumonia caused by MDR Acinetobacter baumannii: a systematic review and meta-analysis. J Antimicrob Chemoth. 2019;74(12):3423–31.

    Article  CAS  Google Scholar 

  17. Wilcox MH. Tigecycline and the need for a new broad-spectrum antibiotic class. Surg Infect. 2006;7(1):69–80.

    Article  Google Scholar 

  18. Esposito S, Petta E. Tigecycline for treatment of intra-abdominal infections: a literature update. J Chemother. 2009;21(Supplement-1):56–60.

    Article  PubMed  Google Scholar 

  19. Leng B, Yan G, Wang C, et al. Dose optimization based on pharmacokinetic/pharmacodynamic target of tigecycline. J Glob Antimicrob Resist. 2021;25(Suppl 1):315–22.

    Article  PubMed  Google Scholar 

  20. Han H, Qin W, Zheng Y, et al. High-dose versus standard-dose tigecycline treatment of secondary bloodstream infections caused by extensively drug-resistant Acinetobacter baumannii: an observational cohort study. Infect Drug Resist. 2021;14:3837–48.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lebrun-Vignes B, Kreft-Jais C, Castot A, et al. Comparative analysis of adverse drug reactions to tetracyclines: results of a French national survey and review of the literature. Brit J Dermatol. 2012;166(6):1333–41.

    Article  CAS  Google Scholar 

  22. Smith K, Leyden JJ. Safety of doxycycline and minocycline: a systematic review. Clin Ther. 2005;27(9):1329–42.

    Article  CAS  PubMed  Google Scholar 

  23. Bettesda(MD). Liver Tox: Clinical and research information on drug-induced liver injury. PubMed. 2019; https://www.ncbi.nlm.nih.gov/books/NBK548040/. Last update: 10 April 2019.

  24. Allen ES, Brown WE. Hepatic toxicity of tetracycline in pregnancy. Am J Obstet Gynecol. 1966;95(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  25. Peters RL, Edmondson HA, Mikkelsen WP, et al. Tetracycline-induced fatty liver in nonpregnant patients. A report of six cases. Am J Surg. 1967;113(5):622–32.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Z, Shi X. Adverse events of high-dose tigecycline in the treatment of ventilator-associated pneumonia due to multidrug-resistant pathogens. Medicine (Baltimore). 2018;97(38):e12467.

    Article  CAS  Google Scholar 

  27. Björnsson E, Jerlstad P, Bergqvist A, et al. Fulminant drug-induced hepatic failure leading to death or liver transplantation in Sweden. Scand J Gastroenterol. 2005;40(9):1095–101.

    Article  PubMed  Google Scholar 

  28. Heaton PC, Fenwick SR, Brewer DE. Association between tetracycline or doxycycline and hepatotoxicity: a population based case-control study. J Clin Pharm Ther. 2007;32(5):483–7.

    Article  CAS  PubMed  Google Scholar 

  29. Sheu CC, Chang YT, Lin SY, et al. Infections caused by Carbapenem-resistant enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019;10:80.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chatterjee S, Annaert P. Drug-induced cholestasis: mechanisms, models, and markers. Curr Drug Metab. 2018;19(10):808–18.

    Article  CAS  PubMed  Google Scholar 

  31. Evans SJ, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001;10(6):483–6.

    Article  CAS  PubMed  Google Scholar 

  32. Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998;54(4):315–21.

    Article  CAS  PubMed  Google Scholar 

  33. Duggirala HJ, Tonning JM, Smith E, et al. Use of data mining at the Food and Drug Administration. J Am Med Inform Assn. 2016;23(2):428–34.

    Article  Google Scholar 

  34. FDA. FDA adverse event reporting system (FAERS) quarterly data extract files. 2021; https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html. Accessed 29 Jan 2021.

  35. Bin WU, Feng-Bo WU, Luo M, et al. Application of MedEx in FAERS drug names standardization. China J Hosp Pharm. 2019;39:1989–92.

    Google Scholar 

  36. Xu H, Stenner SP, Doan S, et al. MedEx: a medication information extraction system for clinical narratives. J Am Med Inform Assoc. 2010;17(1):19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suzuki A, Yuen NA, Ilic K, et al. Comedications alter drug-induced liver injury reporting frequency: data mining in the WHO VigiBase™. Regul Toxicol Pharmacol. 2015;72(3):481–90.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hunt CM, Yuen NA, Stirnadel-Farrant HA, et al. Age-related differences in reporting of drug-associated liver injury: data-mining of WHO Safety Report Database. Regul Toxicol Pharmacol. 2014;70(2):519–26.

    Article  CAS  PubMed  Google Scholar 

  39. Dowling HF, Lepper MH. Hepatic reactions to tetracycline. JAMA-J Am Med Assoc. 1964;188:307–9.

    Article  CAS  Google Scholar 

  40. Schultz JC, Adamson JS Jr, Workman WW, et al. Fatal liver disease after intravenous administration of tetracycline in high dosage. New Engl J Med. 1963;269:999–1004.

    Article  CAS  PubMed  Google Scholar 

  41. Lawrenson RA, Seaman HE, Sundström A, et al. Liver damage associated with minocycline use in acne: a systematic review of the published literature and pharmacovigilance data. Drug Saf. 2000;23(4):333–49.

    Article  CAS  PubMed  Google Scholar 

  42. Nietsch HH, Libman BS, Pansze TW, et al. Minocycline-induced hepatitis. Am J Gastroenterol. 2000;95(10):2993–5.

    Article  CAS  PubMed  Google Scholar 

  43. Rubinstein E, Vaughan D. Tigecycline: a novel glycylcycline. Drugs. 2005;65(10):1317–36.

    Article  CAS  PubMed  Google Scholar 

  44. Sacchidanand S, Penn RL, Embil JM, et al. Efficacy and safety of tigecycline monotherapy compared with vancomycin plus aztreonam in patients with complicated skin and skin structure infections: Results from a phase 3, randomized, double-blind trial. Int J Infect Dis. 2005;9(5):251–61.

    Article  CAS  PubMed  Google Scholar 

  45. Tasina E, Haidich AB, Kokkali S, et al. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis. 2011;11(11):834–44.

    Article  CAS  PubMed  Google Scholar 

  46. Kadoyama K, Sakaeda T, Tamon A, et al. Adverse event profile of tigecycline: data mining of the public version of the U.S. Food and Drug Administration adverse event reporting system. Biol Pharm Bull. 2012;35(6):967–70.

    Article  CAS  PubMed  Google Scholar 

  47. Borsuk-De Moor A, Rypulak E, Potręć B, et al. Population pharmacokinetics of high-dose tigecycline in patients with sepsis or septic shock. Antimicrob Agents Chemother. 2018;62(4):e02273-e2317.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zha L, Pan L, Guo J, et al. Effectiveness and safety of high dose tigecycline for the treatment of severe infections: a systematic review and meta-analysis. Adv Ther. 2020;37(3):1049–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors thank the National Key Research and Development Program (2020YFC2008302) for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu.

Ethics declarations

Conflicts of interests

Authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Liu, Y., Jiang, A. et al. A pharmacovigilance study of the association between tetracyclines and hepatotoxicity based on Food and Drug Administration adverse event reporting system data. Int J Clin Pharm 44, 709–716 (2022). https://doi.org/10.1007/s11096-022-01397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11096-022-01397-5

Keywords

Navigation