Skip to main content

Advertisement

Log in

Determination of potential drug–drug interactions in prescription orders dispensed in a community pharmacy setting using Micromedex® and Lexicomp®: a retrospective observational study

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background Community pharmacists have a role in identifying drug–drug interactions (DDIs) when processing prescription orders and dispensing medications to patients. The harmful effects of DDIs can be prevented or minimized by using an electronic DDI checker to screen for potential DDIs (pDDIs). However, different DDI checkers have variable rates of detecting pDDIs. Aim To estimate the prevalence of pDDIs in prescriptions dispensed in a community pharmacy setting using two electronic DDI databases and to evaluate the association between the pDDIs and contributory factors. Method Eligible prescription orders dispensed by a community pharmacy chain in Qatar from January to July 2020 were included in this retrospective observational study. For each prescription, Micromedex® and Lexicomp® were simultaneously used to identify pDDIs, and the interactions categorized based on severity and risk rating. Results Seven hundred-twenty prescriptions met the inclusion criteria, of which Micromedex® and Lexicomp® respectively identified 125 prescriptions (17.4%) and 230 prescriptions (31.9%) as having at least one pDDI. Moderate strength of agreement was found between Lexicomp® and Micromedex® in identifying pDDIs (Cohen’s Kappa = 0.546). Micromedex® classified 61.6% of DDIs as major severity, while Lexicomp® classified 30.8% as major severity. The number of concurrent medications per prescription was significantly and positively associated with pDDI. Conclusion This study demonstrates a high prevalence of pDDIs among prescriptions dispensed in a community pharmacy setting. It is advisable that community pharmacists in Qatar, who typically do not have access to computerized patient profiles, use these DDI checkers to ensure all pDDIs are communicated to respective prescribers for appropriate action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18820 patients. BMJ. 2004;329(7456):15–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Becker ML, Kallewaard M, Caspers PW. Hospitalisations and emergency department visits due to drug–drug interactions: a literature review. Pharmacoepidemiol Drug Saf. 2007;16(6):641–51.

    Article  PubMed  Google Scholar 

  3. Brvar M, Fokter N, Bunc M, et al. The frequency of adverse drug reaction related admissions according to method of detection, admission urgency and medical department specialty. BMC Clin Pharmacol. 2009;9:8. https://doi.org/10.1186/1472-6904-9-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Juurlink DN, Mamdani M, Kopp A, et al. Drug–drug interactions among elderly patients hospitalized for drug toxicity. JAMA. 2003;289(13):1652–8.

    Article  CAS  PubMed  Google Scholar 

  5. Montane E, Arellano AL, Sanz Y, et al. Drug-related deaths in hospital inpatients: a retrospective cohort study. Br J Clin Pharmacol. 2018;84(3):542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peyriere H, Cassan S, Floutard E, et al. Adverse drug events associated with hospital admission. Ann Pharmacother. 2003;37(1):5–11.

    Article  PubMed  Google Scholar 

  7. Suriyapakorn B, Chairat P, Boonyoprakarn S, et al. Comparison of potential drug–drug interactions with metabolic syndrome medications detected by two databases. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0225239.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Iyer SV, Harpaz R, LePendu P, et al. Mining clinical text for signals of adverse drug–drug interactions. J Am Med Inform Assoc. 2014;21(2):353–62.

    Article  PubMed  Google Scholar 

  9. Strandell J, Bate A, Lindquist M, et al. Drug–drug interactions—a preventable patient safety issue? Br J Clin Pharmacol. 2008;65(1):144–6.

    Article  PubMed  Google Scholar 

  10. Holm J, Eiermann B, Eliasson E, et al. A limited number of prescribed drugs account for the great majority of drug–drug interactions. Eur J Clin Pharmacol. 2014;70(11):1375–83.

    Article  PubMed  Google Scholar 

  11. Gagne JJ, Maio V, Rabinowitz C. Prevalence and predictors of potential drug–drug interactions in Regione Emilia-Romagna, Italy. J Clin Pharm Ther. 2008;33(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  12. Nikolic B, Jankovic S, Stojanov O, et al. Prevalence and predictors of potential drug–drug interactions. Cent Eur J Med. 2014;9(2):348–56.

    CAS  Google Scholar 

  13. Ansari J. Drug interaction and pharmacist. J Young Pharm. 2010;2(3):326–31.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kheshti R, Aalipour M, Namazi S. A comparison of five common drug–drug interaction software programs regarding accuracy and comprehensiveness. J Res Pharm Pract. 2016;5(4):257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clauson KA, Marsh WA, Polen HH, et al. Clinical decision support tools: analysis of online drug information databases. BMC Med Inform Decis Mak. 2007. https://doi.org/10.1186/1472-6947-7-7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weant KA, Bailey AM, Baker SN. Strategies for reducing medication errors in the emergency department. Open Access Emerg Med. 2014;6:45–55.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Becker ML, Caspers PW, Kallewaard M, et al. Determinants of potential drug–drug interaction associated dispensing in community pharmacies in the Netherlands. Pharm World Sci. 2007;29(2):51–7.

    Article  PubMed  Google Scholar 

  18. Becker ML, Kallewaard M, Caspers PW, et al. Potential determinants of drug–drug interaction associated dispensing in community pharmacies. Drug Saf. 2005;28(5):371–8.

    Article  PubMed  Google Scholar 

  19. Tache SV, Sonnichsen A, Ashcroft DM. Prevalence of adverse drug events in ambulatory care: a systematic review. Ann Pharmacother. 2011;45(7–8):977–89.

    Article  PubMed  Google Scholar 

  20. Andersson ML, Bottiger Y, Kockum H, et al. High prevalence of drug–drug interactions in primary health care is caused by prescriptions from other healthcare units. Basic Clin Pharmacol Toxicol. 2018;122:512–6.

    Article  CAS  PubMed  Google Scholar 

  21. Letinier L, Cossin S, Mansiaux Y, et al. Risk of drug–drug interactions in out-hospital drug dispensings in france: results from the drug–drug interaction prevalence study. Front Pharmacol. 2019. https://doi.org/10.3389/fphar.2019.00265.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reis AM, Cassiani SH. Prevalence of potential drug interactions in patients in an intensive care unit of a university hospital in Brazil. Clinics (Sao Paulo). 2011;66(1):9–15.

    Article  Google Scholar 

  23. Tragni E, Casula M, Pieri V, et al. Prevalence of the prescription of potentially interacting drugs. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0078827.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chatsisvili A, Sapounidis I, Pavlidou G, et al. Potential drug–drug interactions in prescriptions dispensed in community pharmacies in Greece. Pharm World Sci. 2010;32(2):187–93.

    Article  PubMed  Google Scholar 

  25. Dirin MM, Mousavi S, Afshari AR, et al. Potential drug–drug interactions in prescriptions dispensed in community and hospital pharmacies in East of Iran. J Res Pharm Pract. 2014;3(3):104–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wellcare Pharmacy. The care you can trust. https://wellcarepharmacies.com. Accessed 7 July 2020.

  27. Pourhoseingholi MA, Vahedi M, Rahimzadeh M. Sample size calculation in medical studies. Gastroenterol Hepatol Bed Bench. 2013;6(1):14–7.

    PubMed  PubMed Central  Google Scholar 

  28. Ahmad A, Umair Khan M, Haque I, et al. Evaluation of potential drug–drug interactions in general medicine ward of teaching hospital in Southern India. J Clin Diag Res. 2015;9(2):66.

    Google Scholar 

  29. Dookeeram D, Bidaisee S, Paul JF, et al. Polypharmacy and potential drug–drug interactions in emergency department patients in the Caribbean. Int J Clin Pharm. 2017;39(5):1119–27.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sancar M, Kasik A, Okuyan B, et al. Determination of potential drug–drug interactions using various software programs in a community pharmacy setting. Turk J Pharm Sci. 2019;16(1):14–9.

    Article  PubMed  Google Scholar 

  31. UpToDate®. Lexicomp drug interactions. https://0-www.uptodate.com.mylibrary.qu.edu.qa/drug-interactions/?source=responsive_home#di-druglist. Accessed 7 July 2020.

  32. IBM Micromedex Solutions®. Drug interactions. https://0-www.micromedexsolutions.com.mylibrary.qu.edu.qa/micromedex2/librarian/CS/4C7995/ND_PR/evidencexpert/ND_P/evidencexpert/DUPLICATIONSHIELDSYNC/4CD5EB/ND_PG/evidencexpert/ND_B/evidencexpert/ND_AppProduct/evidencexpert/ND_T/evidencexpert/PFActionId/evidencexpert.FindDrugInteractions?navitem=topInteractions&isToolPage=true. Accessed 7 July 2020.

  33. Mousavi S, Norouz M, Ashouri A, et al. Study of potential drug–drug interactions in prescriptions of university-based pharmacies. J Pharm Care. 2014;2(2):60–5.

    Google Scholar 

  34. Ren W, Liu Y, Zhang J, et al. Prevalence of potential drug–drug interactions in outpatients of a general hospital in China: a retrospective investigation. Int J Clin Pharm. 2020;42(4):1190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aljadani R, Aseeri M. Prevalence of drug–drug interactions in geriatric patients at an ambulatory care pharmacy in a tertiary care teaching hospital. BMC Res Notes. 2018. https://doi.org/10.1186/s13104-018-3342-5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Doubova SV, Reyes-Morales H, Torres-Arreola LP, et al. Potential drug–drug and drug–disease interactions in prescriptions for ambulatory patients over 50 years of age in family medicine clinics in Mexico City. BMC Health Serv Res. 2007. https://doi.org/10.1186/1472-6963-7-147.

    Article  Google Scholar 

  37. Armahizer MJ, Kane-Gill SL, Smithburger PL, et al. Comparing drug–drug interaction severity ratings between bedside clinicians and proprietary databases. ISRN Critical Care. 2012. https://doi.org/10.5402/2013/347346.

    Article  Google Scholar 

  38. Ismail M, Noor S, Harram U, et al. Potential drug–drug interactions in outpatient department of a tertiary care hospital in Pakistan: a cross-sectional study. BMC Health Serv Res. 2018. https://doi.org/10.1186/s12913-018-3579-7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. IBM Micromedex® Solutions. Drug interactions policy. https://www.ibm.com/downloads/cas/ZVLXDL7X. Accessed 30 Aug 2020.

  40. Chatfield AJ. Lexicomp online and Micromedex 2.0. J Med Libr Assoc. 2015;103(2):112–3.

    Article  PubMed Central  Google Scholar 

  41. Teixeira JJ, Crozatti MT, dos Santos CA, et al. Potential drug–drug interactions in prescriptions to patients over 45 years of age in primary care, southern Brazil. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0047062.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the pharmacists of all the Wellcare Pharmacy outlets in Qatar where data for the study were collected from prescriptions.

Funding

 This study was funded by Qatar University under the Student Grant number QUST-1-CPH-2018-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaw B. Owusu.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, A., Al-Shaibi, S., Sankaralingam, S. et al. Determination of potential drug–drug interactions in prescription orders dispensed in a community pharmacy setting using Micromedex® and Lexicomp®: a retrospective observational study. Int J Clin Pharm 44, 348–356 (2022). https://doi.org/10.1007/s11096-021-01346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11096-021-01346-8

Keywords

Navigation