Skip to main content
Log in

Comparing remifentanil and sufentanil in stress reduction during neurosurgery: a randomised controlled trial

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background In most scenarios, anaesthesiologists titrate opioids to control nociceptive surgical stress based on intraoperative haemodynamic changes. Remifentanil was reported to cause more profound cardiovascular depression than sufentanil. A concern is that this direct cardiovascular depression might counteract the hypertension and tachycardia caused by surgical manipulation and mask inadequate analgesia. Objective To compare remifentanil and sufentanil, titrated to maintain a comparable haemodynamic range (within 20% of baseline) and combined with the same propofol regimen, in stress reduction measured as plasma levels of putative mediators of surgical stress. Setting Huashan Hospital of Fudan University, Shanghai, China. Method Forty-five patients undergoing supratentorial glioma resection were randomised to the remifentanil group or the sufentanil group. Main outcome measures Plasma concentrations of cortisol, epinephrine, norepinephrine, interleukin-6, interleukin-10 and lymphocyte counts were analysed before anaesthesia, 1 h after incision, at the end of surgery and 24 h after incision using enzyme-linked immunosorbent assay and an automatic haematology analyser. Recovery profiles during emergence from anaesthesia were also compared. Results Except for a lower epinephrine concentration in the remifentanil group 24 h after incision (median [interquartile range], 4.2 [3.4–6.1] vs. 8.4 [4.8–12.5] ng/ml; P = 0.003), stress biomarkers were not significantly different between the two groups. Patients in the sufentanil group had lower grades in coughing, restlessness (P = 0.001 and < 0.001, respectively) and a lower incidence of postoperative shivering (P = 0.007). Conclusion Compared to that of sufentanil, the direct cardiovascular depression of remifentanil does not mask the clinical manifestation of inadequate analgesia when both drugs are titrated according to haemodynamic variables in neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen Z, Zhang P, Xu Y, Yan J, Liu Z, Lau WB, et al. Surgical stress and cancer progression: the twisted tango. Mol Cancer. 2019;18:132.

    Article  Google Scholar 

  2. Hiller JG, Perry NJ, Poulogiannis G, Riedel B, Sloan EK. Perioperative events influence cancer recurrence risk after surgery. Nat Rev Clin Oncol. 2018;15:205–18.

    Article  Google Scholar 

  3. Desborough JP. The stress response to trauma and surgery. Br J Anaesth. 2000;85:109–17.

    Article  CAS  Google Scholar 

  4. Greco F, Hoda MR, Mohammed N, Springer C, Fischer K, Fornara P. Laparoendoscopic single-site and conventional laparoscopic radical nephrectomy result in equivalent surgical trauma: preliminary results of a single-centre retrospective controlled study. Eur Urol. 2012;61:1048–53.

    Article  Google Scholar 

  5. Freise H, Van Aken HK. Risks and benefits of thoracic epidural anaesthesia. Br J Anaesth. 2011;107:859–68.

    Article  CAS  Google Scholar 

  6. Hogan BV, Peter MB, Shenoy HG, Horgan K, Hughes TA. Surgery induced immunosuppression. Surgeon. 2011;9:38–43.

    Article  Google Scholar 

  7. Liu S, Wang B, Li S, Zhou Y, An L, Wang Y, et al. Immune cell populations decrease during craniotomy under general anesthesia. Anesth Analg. 2011;113:572–7.

    CAS  PubMed  Google Scholar 

  8. Li Y, Wang B, Zhang L, He S, Hu X, Wong GTC, et al. Dexmedetomidine combined with general anesthesia provides similar intraoperative stress response reduction when compared with a combined general and epidural anesthetic technique. Anesth Analg. 2016;122:1202–10.

    Article  CAS  Google Scholar 

  9. Liao X, Yang Q, Xue F, Luo M, Xu Y, Liu Y, et al. Bolus dose remifentanil and sufentanil blunting cardiovascular intubation responses in children: a randomized, double-blind comparison. Eur J Anaesthesiol. 2009;26:73–80.

    Article  CAS  Google Scholar 

  10. Elliott P, O’Hare R, Bill KM, Phillips AS, Gibson FM, Mirakhur RK. Severe cardiovascular depression with remifentanil. Anesth Analg. 2000;91:58–61.

    Article  CAS  Google Scholar 

  11. Dorrington KI. Induction of anaesthesia with sevoflurane and low-dose remifentanil: asystole following laryngoscopy. Br J Anaesth. 1998;81:994.

    Article  CAS  Google Scholar 

  12. DeSouza G, Lewis MC, TerRiet MF. Severe bradycardia after remifentanil. Anesthesiology. 1997;87:1019–20.

    Article  CAS  Google Scholar 

  13. Altermatt FR, Munoz HR. Asystole with propofol and remifentanil. Br J Anaesth. 2000;84:696–7.

    CAS  PubMed  Google Scholar 

  14. Kurdi O, Deleuze A, Marret E, Bonnet F. Asystole during anaesthetic induction with remifentanil and sevoflurane. Br J Anaesth. 2001;87:943.

    CAS  PubMed  Google Scholar 

  15. Reid JE, Mirakhur RK. Bradycardia after administration of remifentanil. Br J Anaesth. 2000;84:422–3.

    Article  CAS  Google Scholar 

  16. Aouad MT, Al-Alami AA, Nasr VG, Souki FG, Zbeidy RA, Siddik-Sayyid SM. The effect of low-dose remifentanil on responses to the endotracheal tube during emergence from general anesthesia. Anesth Analg. 2009;108:1157–60.

    Article  CAS  Google Scholar 

  17. Hu LG, Pan JH, Li J, Kang F, Jiang L. Effects of different doses of sufentanil and remifentanil combined with propofol in target-controlled infusion on stress reaction in elderly patients. Exp Ther Med. 2013;5:807–12.

    Article  Google Scholar 

  18. Heesen M, Deinsberger W, Dietrich GV, Detsch O, Boldt J, Hempelmann G. Increase of interleukin-6 plasma levels after elective craniotomy: influence of interleukin-10 and catecholamines. Acta Neurochir (Wien). 1996;138:77–80.

    Article  CAS  Google Scholar 

  19. O’Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol. 2007;7:425–8.

    Article  Google Scholar 

  20. Snyder GL, Greenberg S. Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br J Anaesth. 2010;105:106–15.

    Article  CAS  Google Scholar 

  21. Chambrier C, Chassard D, Bienvenu J, Saudin F, Paturel B, Garrigue C, et al. Cytokine and hormonal changes after cholecystectomy. Effect of ibuprofen pretreatment. Ann Surg. 1996;224:178–82.

    Article  CAS  Google Scholar 

  22. Hong JY, Yang SC, Yi J, Kil HK. Epidural ropivacaine and sufentanil and the perioperative stress response after a radical retropubic prostatectomy. Acta Anaesth Scand. 2011;55:282–9.

    Article  CAS  Google Scholar 

  23. Liu R, Qin H, Wang M, Li K, Zhao G. Transversus abdominis plane block with general anesthesia blunts the perioperative stress response in patients undergoing radical gastrectomy. BMC Anesthesiol. 2019;19:205.

    Article  CAS  Google Scholar 

  24. Olsen KS, Pedersen CB, Madsen JB, Ravn LI, Schifter T. Vasoactive modulators during and after craniotomy: relation to postoperative hypertension. J Neurosurg Anesthesiol. 2002;14:171–9.

    Article  Google Scholar 

  25. Markovic-Bozic J, Karpe B, Potocnik I, Jerin A, Vranic A, Novak-Jankovic V. Effect of propofol and sevoflurane on the inflammatory response of patients undergoing craniotomy. BMC Anesthesiol. 2016;16:18.

    Article  Google Scholar 

  26. Shinohara K, Aono H, Unruh GK, Kindscher JD, Goto H. Suppressive effects of remifentanil on hemodynamics in baro-denervated rabbits. Can J Anaesth. 2000;47:361–6.

    Article  CAS  Google Scholar 

  27. Bergmann I, Szabanowski T, Brauer A, Crozier TA, Bauer M, Hinz JM. Remifentanil added to sufentanil-sevoflurane anesthesia suppresses hemodynamic and metabolic stress responses to intense surgical stimuli more effectively than high-dose sufentanil-sevoflurane alone. BMC Anesthesiol. 2015;15:3.

    Article  Google Scholar 

  28. He L, Lee NM. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord. J Pharmacol Exp Ther. 1998;285:1181–6.

    CAS  PubMed  Google Scholar 

  29. De Witte J, Sessler DI. Perioperative shivering: physiology and pharmacology. Anesthesiology. 2002;96:467–84.

    Article  Google Scholar 

  30. Minto CF, Schnider TW, Shafer SL. Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology. 1997;86:24–33.

    Article  CAS  Google Scholar 

  31. Derrode N, Lebrun F, Levron JC, Chauvin M, Debaene B. Influence of peroperative opioid on postoperative pain after major abdominal surgery: sufentanil TCI versus remifentanil TCI. A randomized, controlled study. Br J Anaesth. 2003;91:842–9.

    Article  CAS  Google Scholar 

  32. Sessler DI. Opioids and postoperative shivering. J Clin Anesth. 2016;31:42–3.

    Article  Google Scholar 

  33. Martorano PP, Aloj F, Baietta S, Fiorelli A, Munari M, Paccagnella F, et al. Sufentanil-propofol vs remifentanil-propofol during total intravenous anesthesia for neurosurgery. A multicentre study. Minerva Anestesiol. 2008;74:233–43.

    CAS  PubMed  Google Scholar 

  34. Gepts E. Pharmacokinetic concepts for TCI anaesthesia. Anaesthesia. 1998;53(Suppl 1):4–12.

    Article  CAS  Google Scholar 

  35. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10–23.

    Article  CAS  Google Scholar 

  36. Cho YJ, Jo WY, Oh H, Koo CH, Oh J, Cho JY, et al. Performance of the Minto model for the target-controlled infusion of remifentanil during cardiopulmonary bypass. Anaesthesia. 2017;72:1196–205.

    Article  CAS  Google Scholar 

  37. Mertens MJ, Engbers FH, Burm AG, Vuyk J. Predictive performance of computer-controlled infusion of remifentanil during propofol/remifentanil anaesthesia. Br J Anaesth. 2003;90:132–41.

    Article  CAS  Google Scholar 

  38. Puig MM, Brous P, Canter M, Bansinath M, Scoles J, Turndorf H. Sufentanil pharmacokinetics in neurosurgical patients. Int J Clin Pharmacol Ther Toxicol. 1989;27:229–34.

    CAS  PubMed  Google Scholar 

  39. Lobo F, Beiras A. Propofol and remifentanil effect-site concentrations estimated by pharmacokinetic simulation and bispectral index monitoring during craniotomy with intraoperative awakening for brain tumor resection. J Neurosurg Anesthesiol. 2007;19:183–9.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Prof. Ivan Kangrga (Washington University School of Medicine in St. Louis, Missouri, USA) for revising the manuscript.

Funding

This work was funded by the grants from National Natural Science Foundation of China (Grant No. 81401089 to Meng Deng; Grant No. 81671058 to Ying-Wei Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Deng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Trial registration This study has been retrospectively registered in Chinese Clinical Registry (http://www.chictr.org.cn, identifier: ChiCTR1800015369) on March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YH., Hu, XB., Yang, XM. et al. Comparing remifentanil and sufentanil in stress reduction during neurosurgery: a randomised controlled trial. Int J Clin Pharm 42, 1326–1334 (2020). https://doi.org/10.1007/s11096-020-01094-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11096-020-01094-1

Keywords

Navigation