Skip to main content

Advertisement

Log in

Effects of red blood cell concentrate transfusion on blood tacrolimus concentration

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background Elevated blood concentration of tacrolimus is frequently observed following transfusion of red blood cell concentrate in patients after allogeneic hematopoietic stem cell transplantation. Objective The aim of this retrospective study was to clarify the effects of transfusion of red blood cell concentrate on the blood concentration of tacrolimus. Setting Chiba University Hospital in Japan. Method Fifty-two patients (aged 0–65 years) receiving both tacrolimus and transfusion after allogeneic hematopoietic stem cell transplantation were enrolled. The ratio of measurement after transfusion to measurement before transfusion was calculated for hematocrit and blood concentration/dose ratio of tacrolimus (termed the hematocrit ratio and the tacrolimus ratio, respectively). Main outcome measure Change in blood concentration/dose ratio of tacrolimus and variable factors associated with variation in tacrolimus ratio. Results The blood concentration/dose ratio of tacrolimus was increased after transfusion compared with before transfusion (p < 0.001). A statistically significant correlation was seen between the hematocrit ratio and tacrolimus ratio (r = 0.32, p < 0.001). Hematocrit ratio, age or body surface area, and difference in aspartate aminotransferase level before and after transfusion were associated with the variation in tacrolimus ratio. There was no correlation between tacrolimus ratio and change in serum creatinine or potassium level in the short term. Conclusion Change in the blood concentration/dose ratio of tacrolimus was associated with change in the hematocrit ratio after transfusion, and more attention is required for children or patients with small body surface area. Dose adjustment of tacrolimus is required if the blood concentration of tacrolimus is much higher than the target concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ratanatharathorn V, Nash RA, Przepiorka D, Devine SM, Klein JL, Weisdorf D, et al. Phase III study comparing methotrexate and tacrolimus (prograf, FK506) with methotrexate and cyclosporine for graft-versus-host disease prophylaxis after HLA-identical sibling bone marrow transplantation. Blood. 1998;92:2303–14.

    CAS  PubMed  Google Scholar 

  2. Nash RA, Antin JH, Karanes C, Fay JW, Avalos BR, Yeager AM, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood. 2000;96:2062–8.

    CAS  PubMed  Google Scholar 

  3. Hiraoka A, Ohashi Y, Okamoto S, Moriyama Y, Nagao T, Kodera Y, Japanese FK506 BMT(Bone Marrow Transplantation) Study Group, et al. Phase III study comparing tacrolimus (FK506) with cyclosporine for graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation. Bone Marrow Transpl. 2001;28:181–5.

    Article  CAS  Google Scholar 

  4. Murata M. Prophylactic and therapeutic treatment of graft-versus-host disease in Japan. Int J Hematol. 2015;101:467–86.

    Article  CAS  Google Scholar 

  5. Machida M, Takahara S, Ishibashi M, Hayashi M, Sekihara T, Yamanaka H. Effect of temperature and hematocrit on plasma concentration of FK 506. Transplant Proc. 1991;23:2753–4.

    CAS  PubMed  Google Scholar 

  6. The Japanese Society of Therapeutic Drug Monitoring and the Japanese Society of Transplantation. Guidelines on TDM of immunosuppressive drugs in organ transplantation. 1st ed. Tokyo: Kanehara Publishing Ltd.; 2014.

    Google Scholar 

  7. Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature. 1989;341(6244):755–7.

    Article  CAS  Google Scholar 

  8. Kay JE, Sampare-Kwateng E, Geraghty F, Morgan GY. Uptake of FK 506 by lymphocytes and erythrocytes. Transplant Proc. 1991;23:2760–2.

    CAS  PubMed  Google Scholar 

  9. Cunningham EB. The human erythrocyte membrane contains a novel 12-kDa inositolphosphate-binding protein that is an immunophilin. Biochem Biophys Res Commun. 1995;215:212–8.

    Article  CAS  Google Scholar 

  10. Zahir H, Nand RA, Brown KF, Tattam BN, McLachlan AJ. Validation of methods to study the distribution and protein binding of tacrolimus in human blood. J Pharmacol Toxicol Methods. 2001;46:27–35.

    Article  CAS  Google Scholar 

  11. European Tacrolimus Multicentre Renal Study Group, Undre NA, Schäfer A. Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation. Transplant Proc. 1998;30:1261–3.

    Article  Google Scholar 

  12. Minematsu T, Sugiyama E, Kusama M, Hori S, Yamada Y, Ohtani H, et al. Effect of hematocrit on pharmacokinetics of tacrolimus in adult living donor liver transplant recipients. Transplant Proc. 2004;36:1506–11.

    Article  CAS  Google Scholar 

  13. United States Pharmacopeial Convention. USP DI (1). Drug information for the Health Care Professional 27th. Massachusetts: Thomson Micromedix; 2007. p. 2674–9.

    Google Scholar 

  14. Nagase K, Iwasaki K, Nozaki K, Noda K. Distribution and protein binding of FK506, a potent immunosuppressive macrolide lactone, in human blood and its uptake by erythrocytes. J Pharm Pharmacol. 1994;46:113–7.

    Article  CAS  Google Scholar 

  15. Chow FS, Piekoszewski W, Jusko WJ. Effect of hematocrit and albumin concentration on hepatic clearance of tacrolimus (FK506) during rabbit liver perfusion. Drug Metab Dispos. 1997;25:610–6.

    CAS  PubMed  Google Scholar 

  16. Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet. 1995;29:404–30.

    Article  CAS  Google Scholar 

  17. Golubović B, Vučićević K, Radivojević D, Kovačević SV, Prostran M, Miljković B. Total plasma protein effect on tacrolimus elimination in kidney transplant patients–population pharmacokinetic approach. Eur J Pharm Sci. 2014;52:34–40.

    Article  Google Scholar 

  18. Han N, Yun HY, Hong JY, Kim IW, Ji E, Hong SH, et al. Prediction of the tacrolimus population pharmacokinetic parameters according to CYP3A5 genotype and clinical factors using NONMEM in adult kidney transplant recipients. Eur J Clin Pharmacol. 2013;69:53–63.

    Article  CAS  Google Scholar 

  19. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;86:609–18.

    Article  CAS  Google Scholar 

  20. Yonemura Y, Matsumoto M, Inada E, Ueda Y, Ohishi K, Kino S, et al. Guideline for the use of red blood cell products based on scientific evidence. Jpn J Transfus Cell Ther. 2016;62:641–50.

    Article  Google Scholar 

  21. Sattler M, Guengerich FP, Yun CH, Christians U, Sewing KF. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos. 1992;20:753–61.

    CAS  PubMed  Google Scholar 

  22. Kamdem LK, Streit F, Zanger UM, Brockmöller J, Oellerich M, Armstrong VW, et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem. 2005;51:1374–81.

    Article  CAS  Google Scholar 

  23. Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet. 2007;22:328–35.

    Article  CAS  Google Scholar 

  24. Staatz CE, Willis C, Taylor PJ, Tett SE. Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther. 2002;72:660–9.

    Article  CAS  Google Scholar 

  25. Lu YX, Su QH, Wu KH, Ren YP, Li L, Zhou TY, et al. A population pharmacokinetic study of tacrolimus in healthy Chinese volunteers and liver transplant patients. Acta Pharmacol Sin. 2015;36:281–8.

    Article  CAS  Google Scholar 

  26. Jacobson P, Ng J, Ratanatharathorn V, Uberti J, Brundage RC. Factors affecting the pharmacokinetics of tacrolimus (FK506) in hematopoietic cell transplant (HCT) patients. Bone Marrow Transplant. 2001;28:753–8.

    Article  CAS  Google Scholar 

  27. Wingard JR, Nash RA, Przepiorka D, Klein JL, Weisdorf DJ, Fay JW, et al. Relationship of tacrolimus (FK506) whole blood concentrations and efficacy and safety after HLA-identical sibling bone marrow transplantation. Biol Blood Marrow Transplant. 1998;4:157–63.

    Article  CAS  Google Scholar 

  28. Przepiorka D, Nash RA, Wingard JR, Zhu J, Maher RM, Fitzsimmons WE, et al. Relationship of tacrolimus whole blood levels to efficacy and safety outcomes after unrelated donor marrow transplantation. Biol Blood Marrow Transplant. 1999;5:94–7.

    Article  CAS  Google Scholar 

  29. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70.

    Article  CAS  Google Scholar 

  30. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Chronic Kidney Disease Epidemiology Collaboration, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53:766–72.

    Article  CAS  Google Scholar 

  31. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Collaborators developing the Japanese equation for estimated GFR, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  Google Scholar 

  32. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4:1832–43.

    Article  Google Scholar 

  33. Zahir H, McCaughan G, Gleeson M, Nand RA, McLachlan AJ. Factors affecting variability in distribution of tacrolimus in liver transplant recipients. Br J Clin Pharmacol. 2004;57:298–309.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Conflicts of interest

None of the authors has a relevant financial conflict of interest to disclose in relation to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Uchida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, M., Yamazaki, S., Suzuki, T. et al. Effects of red blood cell concentrate transfusion on blood tacrolimus concentration. Int J Clin Pharm 42, 956–964 (2020). https://doi.org/10.1007/s11096-020-01038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11096-020-01038-9

Keywords

Navigation