International Journal of Clinical Pharmacy

, Volume 39, Issue 4, pp 729–742 | Cite as

Technology-induced errors associated with computerized provider order entry software for older patients

  • Manuel Vélez-Díaz-PallarésEmail author
  • Ana María Álvarez Díaz
  • Teresa Gramage Caro
  • Noelia Vicente Oliveros
  • Eva Delgado-Silveira
  • María Muñoz García
  • Alfonso José Cruz-Jentoft
  • Teresa Bermejo-Vicedo
Research Article


Background The introduction of new technologies in the prescribing process has seen the emergence of new types of medication errors. Objective To determine the prevalence and consequences of technology-induced prescription errors associated with a computerized provider order entry (CPOE) system in hospitalized older patients. Setting Patients 65 years or older admitted to the Departments of Internal Medicine, General Surgery, and Vascular Surgery of a tertiary hospital. Method Prospective observational 6-month study. Technology-induced errors were classified according to various taxonomies. Interrater reliability was measured. Consequences were assessed by interviewing patients and healthcare providers and classified according to their severity. Main outcome measure Prevalence of technology-induced errors. Results A total of 117 patients were included and 107 technology-induced errors were recorded. The prevalence of these errors was 3.65%. Half of the errors were clinical errors (n = 54) and the majority of these were classified as wrong dose, wrong strength, or wrong formulation. Clinical errors were 9 times more likely to be more severe than procedural errors (14.8 vs 1.9%; OR 9.04, 95% CI 1.09–75.07). Most of the errors did not reach the patient. Almost all errors were related to human–machine interactions due to wrong (n = 61) or partial (n = 41) entries. Conclusion Technology-induced errors are common and intrinsic to the implementation of new technologies such as CPOE. The majority of errors appear to be related to human–machine interactions and are of low severity. Prospective trials should be conducted to analyse in detail the way these errors occur and to establish strategies to solve them and increase patient safety.


Adverse drug reaction Computerized provider order entry CPOE Elderly Medical informatics Medication errors Medication safety User-computer interface 




Conflicts of interest

Manuel Vélez-Díaz-Pallarés, Ana María Álvarez Díaz, Teresa Gramage Caro, Noelia Vicente Oliveros, Eva Delgado Silveira, María Muñoz García, Alfonso José Cruz-Jentoft, and Teresa Bermejo-Vicedo declare that they have no conflict of interest.


  1. 1.
    Reckmann MH, Westbrook JI, Koh Y, Lo C, Day RO. Does computerized provider order entry reduce prescribing errors for hospital inpatients? A systematic review. J Am Med Inform Assoc. 2009;16(5):613–23.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kuperman GJ, Gibson RF. Computer physician order entry: benefits, costs, and issues. Ann Intern Med. 2003;139(1):31–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Bates DW, Leape LL, Cullen DJ, Laird N, Petersen LA, Teich JM, et al. Effect of computerized physician order entry and a team intervention on prevention of serious medication errors. JAMA. 1998;280(15):1311–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Kaushal R, Shojania KG, Bates DW. Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Arch Intern Med. 2003;163(12):1409–16.CrossRefPubMedGoogle Scholar
  5. 5.
    Peterson JF, Kuperman GJ, Shek C, Patel M, Avorn J, Bates DW. Guided prescription of psychotropic medications for geriatric inpatients. Arch Intern Med. 2005;165(7):802–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Samaranayake NR, Cheung ST, Chui WC, Cheung BM. Technology-related medication errors in a tertiary hospital: a 5-year analysis of reported medication incidents. Int J Med Inform. 2012;81(12):828–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Tierney WM, Miller ME, Overhage JM, McDonald CJ. Physician inpatient order writing on microcomputer workstations. Effects on resource utilization. JAMA. 1993;269(3):379–83.CrossRefPubMedGoogle Scholar
  8. 8.
    Nuckols TK, Asch SM, Patel V, Keeler E, Anderson L, Buntin MB, et al. Implementing computerized provider order entry in acute care hospitals in the United States could generate substantial savings to society. Jt Comm J Qual Patient Saf. 2015;41(8):341–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Westbrook JI, Gospodarevskaya E, Li L, Richardson KL, Roffe D, Heywood M, et al. Cost-effectiveness analysis of a hospital electronic medication management system. J Am Med Inform Assoc. 2015;22(4):784–93.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kushniruk AW, Triola MM, Borycki EM, Stein B, Kannry JL. Technology induced error and usability: the relationship between usability problems and prescription errors when using a handheld application. Int J Med Inform. 2005;74(7–8):519–26.CrossRefPubMedGoogle Scholar
  11. 11.
    Magrabi F, Ong MS, Runciman W, Coiera E. An analysis of computer-related patient safety incidents to inform the development of a classification. J Am Med Inform Assoc. 2010;17(6):663–70.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Magrabi F, Ong MS, Runciman W, Coiera E. Using FDA reports to inform a classification for health information technology safety problems. J Am Med Inform Assoc. 2012;19(1):45–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Magrabi F, Baker M, Sinha I, Ong MS, Harrison S, Kidd MR, et al. Clinical safety of England’s national programme for IT: a retrospective analysis of all reported safety events 2005 to 2011. Int J Med Inform. 2015;84(3):198–206.CrossRefPubMedGoogle Scholar
  14. 14.
    Cheung KC, van der Veen W, Bouvy ML, Wensing M, van den Bemt PM, de Smet PA. Classification of medication incidents associated with information technology. J Am Med Inform Assoc. 2014;21(e1):e63–70.CrossRefPubMedGoogle Scholar
  15. 15.
    Mangoni AA, Jackson SH. Age-related changes in pharmaco-kinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6–14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hall MJ, DeFrances CJ, Williams SN, Golosinskiy A, Schwartzman A. National hospital discharge survey: 2007 summary. Natl Health Stat Rep. 2010;(29):1–20, 24.Google Scholar
  17. 17.
    Tommelein E, Mehuys E, Petrovic M, Somers A, Van Damme C, Pattyn E, et al. Potentially inappropriate prescribing in nursing home residents detected with the community pharmacists specific GheOP(3)S-tool. Int J Clin Pharm. 2016;38(5):1063–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Solà Bonada N, Álvarez Díaz AM, Codina Jané C. The role of the Pharmacist in the design, development and implementation of medication prescription support systems. Farm Hosp. 2016;40(n06):57–476.Google Scholar
  19. 19.
    Gallagher P, Ryan C, Byrne S, Kennedy J, O’Mahony D. STOPP (screening tool of older person’s prescriptions) and START (screening tool to alert doctors to right treatment). Consensus validation. Int J Clin Pharmacol Ther. 2008;46(2):72–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Magrabi F, Liaw ST, Arachi D, Runciman W, Coiera E, Kidd MR. Identifying patient safety problems associated with information technology in general practice: an analysis of incident reports. BMJ Qual Saf. 2015;. doi: 10.1136/bmjqs-2015-004323.PubMedGoogle Scholar
  21. 21.
    Westbrook JI, Reckmann M, Li L, Runciman WB, Burke R, Lo C, et al. Effects of two commercial electronic prescribing systems on prescribing error rates in hospital in-patients: a before and after study. PLoS Med. 2012;9(1):e1001164.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    National Coordinating Council for Medication Error reporting and Prevention (NCCMERP). NCC MERP index for categorizing medication errors. 2017.
  23. 23.
    Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. 3rd ed. Hoboken: Wiley; 2003. ISBN 0-471-52629-0.CrossRefGoogle Scholar
  24. 24.
    Warm D, Edwards P. Classifying health information technology patient safety related incidents—an approach used in Wales. Appl Clin Inform. 2012;3(2):248–57.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schiff GD, Amato MG, Eguale T, Boehne JJ, Wright A, Koppel R, et al. Computerised physician order entry-related medication errors: analysis of reported errors and vulnerability testing of current systems. BMJ Qual Saf. 2015;24(4):264–71.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Walsh KE, Adams WG, Bauchner H, Vinci RJ, Chessare JB, Cooper MR, et al. Medication errors related to computerized order entry for children. Pediatrics. 2006;118(5):1872–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Raimbault-Chupin M, Spiesser-Robelet L, Guir V, Annweiler C, Beauchet O, Clerc MA, et al. Drug related problems and pharmacist interventions in a geriatric unit employing electronic prescribing. Int J Clin Pharm. 2013;35(5):847–53.CrossRefPubMedGoogle Scholar
  28. 28.
    Dhavle AA, Yang Y, Rupp MT, Singh H, Ward-Charlerie S, Ruiz J. Analysis of prescribers’ notes in electronic prescriptions in ambulatory practice. JAMA Intern Med. 2016;176(4):463–70.CrossRefPubMedGoogle Scholar
  29. 29.
    Singh H, Mani S, Espadas D, Petersen N, Franklin V, Petersen LA. Prescription errors and outcomes related to inconsistent information transmitted through computerized order entry: a prospective study. Arch Intern Med. 2009;169(10):982–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhan C, Hicks RW, Blanchette CM, Keyes MA, Cousins DD. Potential benefits and problems with computerized prescriber order entry: analysis of a voluntary medication error-reporting database. Am J Health Syst Pharm. 2006;63(4):353–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Romero-Ventosa EY, Samartín-Ucha M, Martín-Vila A, Martínez-Sánchez ML, Rey Gómez-Serranillos I, Pineiro-Corrales G. Multidisciplinary teams involved: detection of drug-related problems through continuity of care. Farm Hosp. 2016;40(n06):529–43.PubMedGoogle Scholar
  32. 32.
    Goddard K, Roudsari A, Wyatt JC. Automation bias: a systematic review of frequency, effect mediators, and mitigators. J Am Med Inform Assoc. 2012;19(1):121–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Skitka LJ. Does automation bias decision-making? Int J Hum Comput Stud. 1999;51:991–1006.CrossRefGoogle Scholar
  34. 34.
    Dyer C, Bryan G. Devices designed to avoid wrong route administration of drugs. Anaesthesia. 2011;66(12):1181–2.CrossRefPubMedGoogle Scholar
  35. 35.
    Slight SP, Eguale T, Amato MG, Seger AC, Whitney DL, Bates DW, et al. The vulnerabilities of computerized physician order entry systems: a qualitative study. J Am Med Inform Assoc. 2016;23(2):311–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Vélez-Díaz-Pallarés M, Delgado-Silveira E, Carretero-Accame ME, Bermejo-Vicedo T. Using healthcare failure mode and effect analysis to reduce medication errors in the process of drug prescription, validation and dispensing in hospitalised patients. BMJ Qual Saf. 2013;22(1):42–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Wetterneck TB, Walker JM, Blosky MA, Cartmill RS, Hoonakker P, Johnson MA, et al. Factors contributing to an increase in duplicate medication order errors after CPOE implementation. J Am Med Inform Assoc. 2011;18(6):774–82.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Campbell EM, Sittig DF, Ash JS, Cartmill RS, Hoonakker P, Johnson MA, et al. Types of unintended consequences related to computerized provider order entry. J Am Med Inform Assoc. 2011;18(6):774–82.CrossRefGoogle Scholar
  39. 39.
    Nuckols TK, Smith-Spangler C, Morton SC, Asch SM, Patel VM, Anderson LJ, et al. The effectiveness of computerized order entry at reducing preventable adverse drug events and medication errors in hospital settings: a systematic review and meta-analysis. Syst Rev. 2014;4(3):56.CrossRefGoogle Scholar
  40. 40.
    Leung AA, Keohane C, Amato M, Simon SR, Coffey M, Kaufman N. Impact of vendor computerized physician order entry in community hospitals. J Gen Intern Med. 2012;27(7):801–7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Menendez MD, Alonso J, Rancaño I, Corte JJ, Herranz V, Vazquez F. Impact of computerized physician order entry on medication errors. Rev Calid Asist. 2012;27(6):334–40.CrossRefPubMedGoogle Scholar
  42. 42.
    Villamañán E, Larrubia Y, Ruano M, Vélez M, Armada E, Herrero A, et al. Potential medication errors associated with computer prescriber order entry. Int J Clin Pharm. 2013;35(4):577–83.CrossRefPubMedGoogle Scholar
  43. 43.
    Westbrook JI, Baysari MT, Li L, Burke R, Richardson KL, Day RO. The safety of electronic prescribing: manifestations, mechanisms, and rates of system-related errors associated with two commercial systems in hospitals. J Am Med Inform Assoc. 2013;20(6):1159–67.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Terrell KM, Perkins AJ, Dexter PR, Hui SL, Callahan CM, Miller DK. Computerized decision support to reduce potentially inappropriate prescribing to older emergency department patients: a randomized, controlled trial. J Am Geriatr Soc. 2009;57(8):1388–94.CrossRefPubMedGoogle Scholar
  45. 45.
    Peterson JF, Kuperman GJ, Shek C, Patel M, Avorn J, Bates DW. Guided prescription of psychotropic medications for geriatric inpatients. Arch Intern Med. 2005;165(7):802–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Agostini JV, Zhang Y, Inouye SK. Use of a computer-based reminder to improve sedative–hypnotic prescribing in older hospitalized patients. J Am Geriatr Soc. 2007;55(1):43–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Mattison ML, Afonso KA, Ngo LH, Mukamal KJ. Preventing potentially inappropriate medication use in hospitalized older patients with a computerized provider order entry warning system. Arch Intern Med. 2010;170(15):1331–6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gurwitz JH, Field TS, Rochon P, Judge J, Harrold LR, Bell CM, et al. Effect of computerized provider order entry with clinical decision support on adverse drug events in the long-term care setting. J Am Geriatr Soc. 2008;56(12):2225–33.CrossRefPubMedGoogle Scholar
  49. 49.
    Vicente Oliveros N, Pérez Menendez-Conde C, Gramage Caro T, Álvarez Díaz AM, Vélez-Díaz-Pallarés M, Montero Errasquín B, et al. Potential future risk of errors in medication administration recording. J Eval Clin Pract. 2016;22(5):745–50.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Manuel Vélez-Díaz-Pallarés
    • 1
    Email author
  • Ana María Álvarez Díaz
    • 1
  • Teresa Gramage Caro
    • 1
  • Noelia Vicente Oliveros
    • 1
  • Eva Delgado-Silveira
    • 1
  • María Muñoz García
    • 1
  • Alfonso José Cruz-Jentoft
    • 1
    • 2
  • Teresa Bermejo-Vicedo
    • 1
  1. 1.Pharmacy DepartmentHospital Universitario Ramón y CajalMadridSpain
  2. 2.Servicio de GeriatríaHospital Universitario Ramón y Cajal (IRYCIS)MadridSpain

Personalised recommendations