Skip to main content

Advertisement

Log in

Combating Alcohol Adduct Impurity in Immunosuppressant Drug Product Manufacturing: A Scientific Investigation for Enhanced Process Control

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objective

This research aims to elucidate critical impurities in process validation batches of tacrolimus injection formulations, focusing on identification and characterization of previously unreported impurity at RRT 0.42, identified as the tacrolimus alcohol adduct. The potential root causes for the formation of new impurity was determined using structured risk assessment by cause and effect fishbone diagram. The primary objective was to propose mitigation plan and demonstrate the control of impurities with 6 month accelerated stability results in development batches.

Methods

The investigation utilizes method validation and characterization studies to affirm the accuracy of quantifying the tacrolimus alcohol adduct. The research methodology employed different characterization techniques like rotational rheometer, ICP‒MS, MALDI-MS, 1H NMR, 13C NMR, and DEPT-135 NMR for structural elucidation. Additionally, the exact mass of the impurity is validated using electrospray ionization mass spectra.

Results

Results indicate successful identification and characterization of the tacrolimus alcohol adduct. The study further explores the transformation of Tacrolimus monohydrate under various conditions, unveiling the formation of Tacrolimus hydroxy acid and proposing the existence of a novel degradation product, the Tacrolimus alcohol adduct. Six-month data from development lots utilizing Manufacturing Process II demonstrate significantly lower levels of alcohol adducts.

Conclusions

Manufacturing Process II, selectively locates Tacrolimus within the micellar core of HCO-60, this prevent direct contact of ethanol with Tacrolimus which minimizes impurity alcohol adduct formation. This research contributes to the understanding of tacrolimus formulations, offering ways to safeguard product integrity and stability during manufacturing and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the supplementary materials. Upon request, and subject to review and legal requirements, Pfizer may provide the data that support the findings of this study.

References

  1. PROGRAF Patient Information Leaflet. U.S. Food & Drug Administration website. https://www.fda.gov. Revised 11/22/2022.

  2. Sommers CD, Pang ES, Ghasriani H, Berendt RT, Vilker VL, Keire DA, et al. Analyses of marketplace tacrolimus drug product quality: Bioactivity, NMR and LC-MS. J Pharm Biomed Anal. 2013;85:108–17.

    Article  CAS  PubMed  Google Scholar 

  3. Staatz CE, Tett SE. Clinical pharmacokinetics of once-daily tacrolimus in solid-organ transplant patients. Clin Pharmacokinet. 2015;54:993–1025.

    Article  CAS  PubMed  Google Scholar 

  4. U.S. Food & Drug Administration: FDA. Drugs@FDA: FDA-approved drugs. In: US FDA. MD, FDA; 2023.

  5. Bulusu MA, Baumann K, Stuetz A. Chemistry of the immunomodulatory macrolide ascomycin and related analogues. Prog Chem Org Nat Prod. 2011;94:59–126.

    CAS  PubMed  Google Scholar 

  6. Monograph: USP. Tacrolimus Monohydrate. In: USP-NF. Rockville, MD: USP; 2021.

  7. Ferraboschi P, Colombo D, De Mieri M, Grisenti P. Evaluation, synthesis and characterization of tacrolimus impurities. J Antibiot. 2012;65:349–54.

    Article  CAS  Google Scholar 

  8. Namiki Y, Fujiwara A, Kihara N, Koda S, Hane K, Yasuda T. Determination of the immunosuppressive drug tacrolimus in its dosage forms by high-performance liquid chromatography. Chromatographia. 1995;40:253–8.

    Article  CAS  Google Scholar 

  9. Namiki Y, Kihara N, Koda S, Hane K, Yasuda T. Tautomeric phenomenon of a novel potent immunosuppressant (FK506) in solution. I. Isolation and structure determination of tautomeric compounds. J Antibiot. 1993;46:1149–55.

    Article  CAS  Google Scholar 

  10. Ok H, Arison BH, Ball RG, Beattie TR, Fisher MH, Wyvratt MJ. Thermal rearrangement of the immunosuppressant FK506. Tetrahedron Lett. 1990;31:6477–80.

    Article  CAS  Google Scholar 

  11. Peterka TR, Lusin TT, Bergles J, Ham Z, Grahek R, Urleb U. Forced degradation of tacrolimus and the development of a UHPLC method for impurities determination. Acta Pharm. 2019;69:363–80.

    Article  CAS  PubMed  Google Scholar 

  12. Rozman PT, Grahek R, Hren J, Bastarda A, Bergles J, Urleb U. Solid state compatibility study and characterization of a novel degradation product of tacrolimus in formulation. J Pharm Biomed Anal. 2015;110:67–75.

    Article  Google Scholar 

  13. Skytte DM, Frydenvang K, Hansen L, Nielsen PG, Jaroszewski JW. Synthesis and characterization of an epimer of tacrolimus, an immunosuppressive drug. J Nat Prod. 2010;73:776–9.

    Article  CAS  PubMed  Google Scholar 

  14. Skytte DM, Jaroszewski JW, Johansen KT, Hansen SH, Hansen L, Nielsen PG, et al. Some transformations of tacrolimus, an immunosuppressive drug. Eur J Pharm Sci. 2013;48:514–22.

    Article  CAS  PubMed  Google Scholar 

  15. Subasranjan A, Srinivasulu C, Hemant R. An improved validated ultra high pressure liquid chromatography method for separation of tacrolimus impurities and its tautomers. Drug Test Anal. 2010;2:107–12.

    Article  CAS  PubMed  Google Scholar 

  16. Namiki Y, Fujiwara A, Kihara N, Koda S, Hane K, Yasuda T. Factors affecting tautomeric phenomenon of a novel potent immunosuppressant (FK506) on the design for injectable formulation. Drug Dev Ind Pharm. 1995;21:809–22.

    Article  CAS  Google Scholar 

  17. Askin D, Reamer RA, Joe D, Volante RP, Shinkai I. A mechanistic study of the FK-506 tricarbonyl system rearrangement: Synthesis of C.9 Labeled FK-506. Tetrahedron Lett. 1989;30:6121–4.

    Article  CAS  Google Scholar 

  18. Baumann K, Bacher M, Steck A, Wagner T. On the reactivity of ascomycin at the binding domain. Part 2: Hydroxide mediated rearrangement reactions. Tetrahedron. 2004;60:5965–81.

    Article  CAS  Google Scholar 

  19. Baumann K, Bacher M, Damont A, Hogenauer K, Steck A. On the reactivity of ascomycin at the binding domain. Part 1: Liberation of the tricarbonyl portion of ascomycin. Tetrahedron Lett. 2003;59:10075–87.

    Article  CAS  Google Scholar 

  20. Sajjadi S, Siahi-Shadbad M, Moghaddam MRF. Stability tests and analytical methods of tacrolimus: A Review. ImmunoAnalysis. 2022;2:1–12.

    Article  Google Scholar 

  21. Wijaya EC, Separovic F, Drummond CJ, Greaves TL. Micelle formation of a non-ionic surfactant in non-aqueous molecular solvents and protic ionic liquids (PILs). Physical Chemistry Chemical Physics. 2016;18:24377–86.

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Han YC, Zhang JL, Wang BG. Effect of ethanol on the aggregation properties of cetyltrimethylammonium bromide surfactant. Colloid Journal. 2005;67:159–63.

    Article  CAS  Google Scholar 

  23. Sidim T, Acar G. Alcohols effect on critic micelle concentration of polysorbate 20 and cetyl trimethyl ammonium bromine mixed solutions. J Surfactants Deterg. 2013;16:601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akhter MS, Alawi SM. The effect of organic additives on critical micelle concentration of non-aqueous micellar solutions. Colloids Surf A: Physicochem Eng Asp. 2000;175:311–20.

    Article  CAS  Google Scholar 

  25. Herzfeld SH, Corrin ML, Harkins WD. The The effect of alcohols and of alcohols and salts on the critical micelle concentration of dodecylammonium chloride. J Phys Chem. 1950;54:271–83.

    Article  CAS  Google Scholar 

  26. Diallo MS, Abriola LM, Weber WJ. Solubilization of nonaqueous phase liquid hydrocarbons in micellar solutions of dodecyl alcohol ethoxylates. Environ Sci Tech. 1994;28:1829–37.

    Article  CAS  Google Scholar 

  27. Huang JB, Zhu BY, Zhao GX, Zhang ZY. Vesicle formation of a 1:1 catanionic surfactant mixture in ethanol solution. Langmuir. 1997;13:5759–61.

    Article  CAS  Google Scholar 

  28. Nagamune N, Yoshikiyo M, Hiromoto U, Ryohei M. Effect of alcohols on the micelle formation of nonionic surfactants in aqueous solutions. Bull Chem Soc Jpn. 1974;47:2634–8.

    Article  Google Scholar 

  29. Singh HN, Saleem SM, Singh RP, Birdi KS. Micelle formation of ionic surfactants in polar nonaqueous solvents. J Phys Chem. 1980;84:2191–4.

    Article  CAS  Google Scholar 

  30. Zana R, Yiv S, Strazielle C, Lianos P. Effect of alcohol on the properties of micellar systems: I. critical micellization concentration, micelle molecular weight and ionization degree, and solubility of alcohols in micellar solutions. J Colloid Interface Sci. 1981;80:208–23.

    Article  CAS  Google Scholar 

  31. Momper JD, Ridenour TA, Schonder KS, Shapiro R, Humar A, Venkataramanan R. The impact of conversion from prograf to generic tacrolimus in liver and kidney transplant recipients with stable graft function. Am J Transplant. 2011;1:1861–7.

    Article  Google Scholar 

  32. Masri M, Rizk S, Boujbel L, Bellahirich W, Baassoumi D, Attia M, Matha V. Prograf five milligrams versus tacrolimus medis in healthy volunteers: A bioequivalence study. Transplant Proc. 2013;45:3453–7.

    Article  CAS  PubMed  Google Scholar 

  33. Arnet I, Altermatt M, Roggo Y, Schnetzler G. Pharmaceutical quality of eight generics of ceftriaxone preparation for injection in Eastern Asia. J Chemotherapy. 2015;27:337–42.

    Article  CAS  Google Scholar 

  34. Gasser UE, Fischer A, Timmermans JP, Arnet I. Pharmaceutical quality of seven generic levodopa/benserazide products compared with original madopar/prolopa. BMC Pharmacol Toxicol. 2013;14:1–6.

    Article  Google Scholar 

  35. Petan JA, Undre N, First MR, Saito K, Ohara T, Iwabe O, Mimura H, Suzuki M, Kitamura S. Physiochemical properties of generic formulations of tacrolimus in mexico. Transplant Proc. 2008;40:1439–42.

    Article  CAS  PubMed  Google Scholar 

  36. Rayavarapu S, Braithwaite E, Dorsam R, Osterhout J, Furlong L, Shetty D, Peters JR. Comparative risk assessment of formulation changes in generic drug products: A pharmacology/toxicology perspective. Toxicol Sci. 2015;146:2–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank RK, Ramachandran, Dorwat, Anand, and Srinivasu, Polisetty from Pfizer, External Supply, Operation and Category Management, for their external collaboration. All the authors would like to thank Gland Pharma Limited, Hyderabad, India, for their collaboration and for making the PV batch at their manufacturing site. Sekar Vasanthakumar would like to thank M.D. Raja, Senior Scientist, SID, Chennai, India for the final review and comments. Authors would like to thank Vicki Morris, Senior Manager Biostatistics, Medicinal Science, Pfizer, Mulgrave, Australia for the simulation data plot and review.

Funding

This work is part of regular project in Pfizer Healthcare, India Pvt Ltd., Chennai, India.

Author information

Authors and Affiliations

Authors

Contributions

Study Design, Development and Analysis: Sekar Vasanthakumar, Devarajan V, VB, ArunKumar and Sivaraman, Sivananthan.

Data analysis and Interpretation: Sekar Vasanthakumar, Devarajan V, VB, ArunKumar, Janakarajan, Venkatakrishnan, Sethuraman, Sai, and Geoffroy, Jean-Marie M.

Project management and administration: Sivaraman, Sivananthan, Sethuraman, Sai, Shiroor, Sandeep G, Geoffroy, Jean-Marie M, Sekar Vasanthakumar and Devarajan V.

Manuscript conceptualization: Sekar Vasanthakumar, Devarajan V, VB, ArunKumar, Sivaraman, Sivananthan Sethuraman, Sai, Shiroor, Sandeep G, Geoffroy, Jean-Marie M.

Manuscript writing: Sekar Vasanthakumar.

Manuscript review and editing: all the authors.

Corresponding author

Correspondence to Vasanthakumar Sekar.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2004 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, V., Vedhachalam, D., VB, A. et al. Combating Alcohol Adduct Impurity in Immunosuppressant Drug Product Manufacturing: A Scientific Investigation for Enhanced Process Control. Pharm Res (2024). https://doi.org/10.1007/s11095-024-03695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-024-03695-1

Keywords

Navigation