Skip to main content
Log in

Pharmacokinetics of PEGasparaginase in Infants with Acute Lymphoblastic Leukemia

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Background

PEGasparaginase is known to be a critical drug for treating pediatric acute lymphoblastic leukemia (ALL), however, there is insufficient evidence to determine the optimal dose for infants who are less than one year of age at diagnosis. This international study was conducted to identify the pharmacokinetics of PEGasparaginase in infants with newly diagnosed ALL and gather insight into the clearance and dosing of this population.

Methods

Infants with ALL who received treatment with PEGasparaginase were included in our population pharmacokinetic assessment employing non-linear mixed effects modelling (NONMEM).

Results

68 infants with ALL, with a total of 388 asparaginase activity samples, were included. PEGasparaginase doses ranging from 400 to 3,663 IU/m2 were administered either intravenously or intramuscularly. A one-compartment model with time-dependent clearance, modeled using a transit model, provided the best fit to the data. Body weight was significantly correlated with clearance and volume of distribution. The final model estimated a half-life of 11.7 days just after administration, which decreased to 1.8 days 14 days after administration. Clearance was 19.5% lower during the post-induction treatment phase compared to induction.

Conclusion

The pharmacokinetics of PEGasparaginase in infants diagnosed under one year of age with ALL is comparable to that of older children (1–18 years). We recommend a PEGasparaginase dosing at 1,500 IU/m2 for infants without dose adaptations according to age, and implementing therapeutic drug monitoring as standard practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Biondi A, Rizzari C, Valsecchi MG, De Lorenzo P, Arico M, Basso G, Locatelli F, Lo Nigro L, De Rossi G, Masera G. Role of treatment intensification in infants with acute lymphoblastic leukemia: results of two consecutive AIEOP studies. Haematologica. 2006 Apr;91(4):534–7. Epub 2006/03/16. Cited in: Pubmed; PMID 16537119.

  2. Dördelmann M, Reiter A, Borkhardt A, Ludwig W-D, Götz N, Viehmann S, Gadner H, Riehm HR, Schrappe M. Prednisone Response Is the Strongest Predictor of Treatment Outcome in Infant Acute Lymphoblastic Leukemia. Blood. 1999;94(4):1209–17. https://doi.org/10.1182/blood.V94.4.1209.

    Article  PubMed  Google Scholar 

  3. Hilden JM, Dinndorf PA, Meerbaum SO, Sather H, Villaluna D, Heerema NA, McGlennen R, Smith FO, Woods WG, Salzer WL, Johnstone HS, Dreyer Z, Reaman GH, Children’s OG. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children’s Oncology Group. Blood. 2006;108(2):441–51. https://doi.org/10.1182/blood-2005-07-3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reaman GH, Sposto R, Sensel MG, Lange BJ, Feusner JH, Heerema NA, Leonard M, Holmes EJ, Sather HN, Pendergrass TW, Johnstone HS, O’Brien RT, Steinherz PG, Zeltzer PM, Gaynon PS, Trigg ME, Uckun FM. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol. 1999;17(2):445–55. https://doi.org/10.1200/JCO.1999.17.2.445.

    Article  CAS  PubMed  Google Scholar 

  5. Chessells JM, Harrison CJ, Watson SL, Vora AJ, Richards SM. Medical Research Council Working Party on Childhood L. Treatment of infants with lymphoblastic leukaemia: results of the UK Infant Protocols 1987–1999. Br J Haematol. 2002;117(2):306–14. https://doi.org/10.1046/j.1365-2141.2002.03442.x.

    Article  CAS  PubMed  Google Scholar 

  6. Frankel LS, Ochs J, Shuster JJ, Dubowy R, Bowman WP, Hockenberry-Eaton M, Borowitz M, Carroll AJ, Steuber CP, Pullen DJ. Therapeutic trial for infant acute lymphoblastic leukemia: the Pediatric Oncology Group experience (POG 8493). J Pediatr Hematol Oncol. 1997;19(1):35–42. https://doi.org/10.1097/00043426-199701000-00005.

    Article  CAS  PubMed  Google Scholar 

  7. Tomizawa D, Miyamura T, Imamura T, Watanabe T, Moriya Saito A, Ogawa A, Takahashi Y, Hirayama M, Taki T, Deguchi T, Hori T, Sanada M, Ohmori S, Haba M, Iguchi A, Arakawa Y, Koga Y, Manabe A, Horibe K, Ishii E, Koh K. A risk-stratified therapy for infants with acute lymphoblastic leukemia: a report from the JPLSG MLL-10 trial. Blood. 2020;136(16):1813–23. https://doi.org/10.1182/blood.2019004741.

    Article  CAS  PubMed  Google Scholar 

  8. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M, Hovi L, LeBlanc T, Szczepanski T, Ferster A, Janka G, Rubnitz J, Silverman L, Stary J, Campbell M, Li CK, Mann G, Suppiah R, Biondi A, Vora A, Valsecchi MG. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007;370(9583):240–50. https://doi.org/10.1016/S0140-6736(07)61126-X.

    Article  CAS  PubMed  Google Scholar 

  9. Pieters R, De Lorenzo P, Ancliffe P, Aversa LA, Brethon B, Biondi A, Campbell M, Escherich G, Ferster A, Gardner RA, Kotecha RS, Lausen B, Li CK, Locatelli F, Attarbaschi A, Peters C, Rubnitz JE, Silverman LB, Stary J, Szczepanski T, Vora A, Schrappe M, Valsecchi MG. Outcome of Infants Younger Than 1 Year With Acute Lymphoblastic Leukemia Treated With the Interfant-06 Protocol: Results From an International Phase III Randomized Study. J Clin Oncol. 2019;37;25(25):2246–56. https://doi.org/10.1200/JCO.19.00261.

  10. van der Sluis IM, de Lorenzo P, Kotecha RS, Attarbaschi A, Escherich G, Nysom K, Stary J, Ferster A, Brethon B, Locatelli F, Schrappe M, Scholte-van Houtem PE, Valsecchi MG, Pieters R. Blinatumomab Added to Chemotherapy in Infant Lymphoblastic Leukemia. N Engl J Med. 2023;388(17):1572–81. https://doi.org/10.1056/NEJMoa2214171.

    Article  PubMed  Google Scholar 

  11. Interfant-21 Treatment Protocol for Infants Under 1 Year With KMT2A-rearranged ALL or Mixed Phenotype Acute Leukemia. EudraCT Number: 2021-000213-16. Available from: https://clinicaltrials.gov/study/NCT05327894. Accessed 30 May 2022

  12. Nijstad AL, Barnett S, Lalmohamed A, Berenos IM, Parke E, Carruthers V, Tweddle DA, Kong J, Zwaan CM, Huitema ADR, Veal GJ. Clinical pharmacology of cytotoxic drugs in neonates and infants: Providing evidence-based dosing guidance. Eur J Cancer. 2022;164:137–54. https://doi.org/10.1016/j.ejca.2021.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gottschalk Hojfeldt S, Grell K, Abrahamsson J, Lund B, Vettenranta K, Jonsson OG, Frandsen TL, Wolthers BO, Marquart HV, Vaitkeviciene G, Lepik K, Heyman M, Schmiegelow K, Albertsen BK. Relapse risk following truncation of pegylated asparaginase in childhood acute lymphoblastic leukemia. Blood. 2021;137(17):2373–82. https://doi.org/10.1182/blood.2020006583.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta S, Wang C, Raetz EA, Schore R, Salzer WL, Larsen EC, Maloney KW, Mattano LA Jr, Carroll WL, Winick NJ, Hunger SP, Loh ML, Devidas M. Impact of Asparaginase Discontinuation on Outcome in Childhood Acute Lymphoblastic Leukemia: A Report From the Children’s Oncology Group. J Clin Oncol. 2020;38(17):1897–905. https://doi.org/10.1200/JCO.19.03024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muller HJ, Boos J. Use of L-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998;28(2):97–113. https://doi.org/10.1016/S1040-8428(98)00015-8.

    Article  CAS  PubMed  Google Scholar 

  16. van der Sluis IM, Vrooman LM, Pieters R, Baruchel A, Escherich G, Goulden N, Mondelaers V, de Sanchez TJ, Rizzari C, Silverman LB, Whitlock JA. Consensus expert recommendations for identification and management of asparaginase hypersensitivity and silent inactivation. Haematologica. 2016;101(3):279–85.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schmiegelow K, Attarbaschi A, Barzilai S, Escherich G, Frandsen TL, Halsey C, Hough R, Jeha S, Kato M, Liang DC, Mikkelsen TS, Moricke A, Niinimaki R, Piette C, Putti MC, Raetz E, Silverman LB, Skinner R, Tuckuviene R, van der Sluis I, Zapotocka E. Ponte di Legno toxicity working g Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. Lancet Oncol. 2016;17(6):e231–9. https://doi.org/10.1016/S1470-2045(16)30035-3.

    Article  PubMed  Google Scholar 

  18. Kloos RQH, Mathot R, Pieters R, van der Sluis IM. Individualized dosing guidelines for PEGasparaginase and factors influencing the clearance: a population pharmacokinetic model. Haematologica. 2020. https://doi.org/10.3324/haematol.2019.242289.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Henriksen LT, Nersting J, Raja RA, Frandsen TL, Rosthoj S, Schroder H, Albertsen BK. Nordic Society of Paediatric H, Oncology g. Cerebrospinal fluid asparagine depletion during pegylated asparaginase therapy in children with acute lymphoblastic leukaemia. Br J Haematol. 2014;166(2):213–20. https://doi.org/10.1111/bjh.12865.

    Article  CAS  PubMed  Google Scholar 

  20. Fernandez CA, Cai X, Elozory A, Liu C, Panetta JC, Jeha S, Molinelli AR, Relling MV. High-throughput asparaginase activity assay in serum of children with leukemia. Int J Clin Exp Med. 2013;6(7):478–87.

    PubMed  PubMed Central  Google Scholar 

  21. Keizer RJ, Karlsson MO, Hooker A. Modeling and Simulation Workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst Pharmacol. 2013;2(6): e50. https://doi.org/10.1038/psp.2013.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)–a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75(2):85–94. https://doi.org/10.1016/j.cmpb.2003.11.003.

    Article  PubMed  Google Scholar 

  23. Boeckmann AJ, Sheiner LB, Beal SL. NONMEM Users Guide - Part V. University of California at San Francisco: 2011. 169 p. p. 1–169 (Group NP, editor. NONMEM Users Guide).

  24. Nijstad AL, Chu WY, de Vos-Kerkhof E, Enters-Weijnen CF, van de Velde ME, Kaspers GJL, Barnett S, Veal GJ, Lalmohamed A, Zwaan CM, Huitema ADR. A population pharmacokinetic modelling approach to unravel the complex pharmacokinetics of vincristine in children. Pharm Res. 2022;39(10):2487–95. https://doi.org/10.1007/s11095-022-03364-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Health. RCoPaC. UK-WHO Growth charts [Internet]. [cited 2021]. Available from: https://www.rcpch.ac.uk/resources/growth-charts.

  26. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317(17):1098. https://doi.org/10.1056/NEJM198710223171717.

    Article  CAS  PubMed  Google Scholar 

  27. Avramis VI, Sencer S, Periclou AP, Sather H, Bostrom BC, Cohen LJ, Ettinger AG, Ettinger LJ, Franklin J, Gaynon PS, Hilden JM, Lange B, Majlessipour F, Mathew P, Needle M, Neglia J, Reaman G, Holcenberg JS, Stork L. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood. 2002;99(6):1986–94.

    Article  CAS  PubMed  Google Scholar 

  28. Avramis VI, Panosyan EH. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet. 2005;44(4):367–93. https://doi.org/10.2165/00003088-200544040-00003.

    Article  CAS  PubMed  Google Scholar 

  29. Asselin BL. The three asparaginases. Comparative pharmacology and optimal use in childhood leukemia. In: Kaspers GJL, Pieters R, Veerman AJP, editors. Drug Resistance in Leukemia and Lymphoma III. 1999/09/29 ed. University Hospital Vrije Universiteit Amsterdam, The Netherlands: Springer Science+Business Media, LLC; 1999. p. 621–9. eng.

  30. Pieters R, Appel I, Kuehnel HJ, Tetzlaff-Fohr I, Pichlmeier U, van der Vaart I, Visser E, Stigter R. Pharmacokinetics, pharmacodynamics, efficacy, and safety of a new recombinant asparaginase preparation in children with previously untreated acute lymphoblastic leukemia: a randomized phase 2 clinical trial. Blood. 2008;112(13):4832–8. https://doi.org/10.1182/blood-2008-04-149443.Cited.In:Pubmed;PMID18805963.

    Article  CAS  PubMed  Google Scholar 

  31. Appel IM, Kazemier KM, Boos J, Lanvers C, Huijmans J, Veerman AJ, van Wering E, den Boer ML, Pieters R. Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: results from a single agent window study. Leukemia. 2008;22(9):1665–79. https://doi.org/10.1038/leu.2008.165.

    Article  CAS  PubMed  Google Scholar 

  32. Dosne AG, Bergstrand M, Karlsson MO. An automated sampling importance resampling procedure for estimating parameter uncertainty. J Pharmacokinet Pharmacodyn. 2017;44(6):509–20. https://doi.org/10.1007/s10928-017-9542-0.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hempel G, Muller HJ, Lanvers-Kaminsky C, Wurthwein G, Hoppe A, Boos J. A population pharmacokinetic model for pegylated-asparaginase in children. Br J Haematol. 2010;148(1):119–25. https://doi.org/10.1111/j.1365-2141.2009.07923.x.

    Article  CAS  PubMed  Google Scholar 

  34. Wurthwein G, Lanvers-Kaminsky C, Siebel C, Gerss J, Moricke A, Zimmermann M, Stary J, Smisek P, Schrappe M, Rizzari C, Zucchetti M, Hempel G, Wicha SG, Boos J, Party A-BAAW. Population pharmacokinetics of PEGylated asparaginase in children with acute lymphoblastic leukemia: Treatment phase dependency and predictivity in case of missing data. Eur J Drug Metab Pharmacokinet. 2021;46(2):289–300. https://doi.org/10.1007/s13318-021-00670-8.

  35. Robin QHK, Ron M, Rob P, Inge MVDS. Individualized dosing guidelines for PEGasparaginase and factors influencing the clearance: a population pharmacokinetic model. Haematologica. 2021;106(5):1254–61. https://doi.org/10.3324/haematol.2019.242289.

    Article  CAS  Google Scholar 

  36. Wurthwein G, Lanvers-Kaminsky C, Hempel G, Gastine S, Moricke A, Schrappe M, Karlsson MO, Boos J. Population pharmacokinetics to model the time-varying clearance of the PEGylated Asparaginase Oncaspar(R) in children with acute lymphoblastic leukemia. Eur J Drug Metab Pharmacokinet. 2017. https://doi.org/10.1007/s13318-017-0410-5.

    Article  PubMed  Google Scholar 

  37. Dam M, Centanni M, Friberg LE, Centanni D, Karlsson MO, Stensig Lynggaard L, Johannsdottir IM, Wik HS, Malmros J, Vaitkeviciene GE, Griskevicius L, Hallbook H, Jonsson OG, Overgaard U, Schmiegelow K, Hansen SN, Heyman M, Albertsen BK. Increase in peg-asparaginase clearance as a predictor for inactivation in patients with acute lymphoblastic leukemia. Leukemia. 2024. https://doi.org/10.1038/s41375-024-02153-6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sassen SD, Mathot RA, Pieters R, Kloos RQ, de Haas V, Kaspers GJ, van den Bos C, Tissing WJ, Te Loo M, Bierings MB, Kollen WJ, Zwaan CM, van der Sluis IM. Population pharmacokinetics of intravenous Erwinia asparaginase in pediatric acute lymphoblastic leukemia patients. Haematologica. 2017;102(3):552–61. https://doi.org/10.3324/haematol.2016.149195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van der Meer LT, Terry SY, van Ingen Schenau DS, Andree KC, Franssen GM, Roeleveld DM, Metselaar JM, Reinheckel T, Hoogerbrugge PM, Boerman OC, van Leeuwen FN. In vivo imaging of antileukemic drug asparaginase reveals a rapid macrophage-mediated clearance from the bone marrow. J Nucl Med. 2017;58(2):214–20. https://doi.org/10.2967/jnumed.116.177741.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):655–77. https://doi.org/10.1002/wnan.1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adams DO, Hamilton TA. Tumor cell recognition and destruction by activated macrophages: effector and regulatory mechanisms. In: van Furth R, editor. Mononuclear Phagocytes: Characteristics, Physiology and Function. Dordrecht: Springer, Netherlands; 1985. p. 493–501.

    Chapter  Google Scholar 

  42. Becker S. Functions of the human mononuclear phagocyte system. Adv Drug Deliv Rev. 1988;2(1):1–29. https://doi.org/10.1016/0169-409X(88)90003-8.

    Article  Google Scholar 

  43. Kloos RQH, Pieters R, Jumelet FMV, de Groot-Kruseman HA, van den Bos C, van der Sluis IM. Individualized asparaginase dosing in childhood acute lymphoblastic leukemia. J Clin Oncol. 2020;38(7):715–24. https://doi.org/10.1200/JCO.19.02292.

    Article  CAS  PubMed  Google Scholar 

  44. Karachunskiy A, Tallen G, Roumiantseva J, Lagoiko S, Chervova A, von Stackelberg A, Aleinikova O, Bydanov O, Bajdun L, Nasedkina T, Korepanova N, Kuznetsov S, Novichkova G, Goroshkova M, Litvinov D, Myakova N, Ponomareva N, Inyushkina E, Kondratchik K, Abugova J, Fechina L, Arakaev O, Karelin A, Lebedev V, Judina N, Scharapova G, Spichak I, Shamardina A, Ryskal O, Shapochnik A, Rumjanzew A, Boos J, Henze G. group A-Ms Reduced vs. standard dose native E. coli-asparaginase therapy in childhood acute lymphoblastic leukemia: long-term results of the randomized trial Moscow-Berlin 2002. J Cancer Res Clin Oncol. 2019;145(4):1001–12. https://doi.org/10.1007/s00432-019-02854-x.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jeha S, Pei D, Choi J, Cheng C, Sandlund JT, Coustan-Smith E, Campana D, Inaba H, Rubnitz JE, Ribeiro RC, Gruber TA, Raimondi SC, Khan RB, Yang JJ, Mullighan CG, Downing JR, Evans WE, Relling MV, Pui CH. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St jude total therapy study 16. J Clin Oncol. 2019;37:3377–91. https://doi.org/10.1200/JCO.19.01692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brigitha LJ, Pieters R, van der Sluis IM. How much asparaginase is needed for optimal outcome in childhood acute lymphoblastic leukaemia? A systematic review Eur J Cancer. 2021;157:238–49. https://doi.org/10.1016/j.ejca.2021.08.025.

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Panetta JC, Yang W, Karol SE, Cheng C, Yang JJ, Evans WE, Inaba H, Pui CH, Jeha S, Relling MV. to the editor: Dosing-related saturation of toxicity and accelerated drug clearance with pegaspargase treatment. Blood. 2021;136(25):2955–8.

    Article  Google Scholar 

  48. Lynggaard LS, Rank CU, Hansen SN, Gottschalk Hojfeldt S, Henriksen LT, Jarvis KB, Ranta S, Niinimaki R, Harila-Saari A, Wolthers BO, Frandsen TL, Heyman M, Schmiegelow K, Albertsen BK. Asparaginase enzyme activity levels and toxicity in childhood acute lymphoblastic leukemia: a NOPHO ALL2008 study. Blood Adv. 2021. https://doi.org/10.1182/bloodadvances.2021005631.

    Article  Google Scholar 

  49. Rizzari C, Zucchetti M, Conter V, Diomede L, Bruno A, Gavazzi L, Paganini M, Sparano P, Lo Nigro L, Arico M, Milani M, D'Incalci M. L-asparagine depletion and L-asparaginase activity in children with acute lymphoblastic leukemia receiving i.m. or iv. Erwinia C. or E. coli L-asparaginase as first exposure. Ann Oncol. 2000;11(2):189–93.

  50. Rizzari C, Citterio M, Zucchetti M, Conter V, Chiesa R, Colombini A, Malguzzi S, Silvestri D, D’Incalci M. A pharmacological study on pegylated asparaginase used in front-line treatment of children with acute lymphoblastic leukemia. Haematologica. 2006;91(1):24–31.

    CAS  PubMed  Google Scholar 

  51. Schore RJ, Devidas M, Bleyer A, Reaman GH, Winick N, Loh ML, Raetz EA, Carroll WL, Hunger SP, Angiolillo AL. Plasma asparaginase activity and asparagine depletion in acute lymphoblastic leukemia patients treated with pegaspargase on Children’s Oncology Group AALL07P4 (.). Leuk Lymphoma. 2019;60(7):1740–8. https://doi.org/10.1080/10428194.2018.1542146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brigitha LJ, Fiocco M, Pieters R, Albertsen BK, Escherich G, Lopez-Lopez E, Mondelaers V, Vora A, Vrooman L, Schmiegelow K, van der Sluis IM, Ponte di Legno Toxicity Working G. Hypersensitivity to Pegylated E.coli asparaginase as first-line treatment in contemporary paediatric acute lymphoblastic leukaemia protocols: a meta-analysis of the Ponte di Legno Toxicity working group. Eur J Cancer. 2022;162:65–75. https://doi.org/10.1016/j.ejca.2021.11.016.

  53. Rizzari C, Moricke A, Valsecchi MG, Conter V, Zimmermann M, Silvestri D, Attarbaschi A, Niggli F, Barbaric D, Stary J, Elitzur S, Cario G, Vinti L, Boos J, Zucchetti M, Lanvers-Kaminsky C, von Stackelberg A, Biondi A, Schrappe M. Incidence and characteristics of hypersensitivity reactions to PEG-asparaginase observed in 6136 children with acute lymphoblastic leukemia enrolled in the AIEOP-BFM ALL 2009 study protocol. Hemasphere. 2023;7(6): e893. https://doi.org/10.1097/HS9.0000000000000893.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khalil A, Wurthwein G, Golitsch J, Hempel G, Fobker M, Gerss J, Moricke A, Zimmermann M, Smisek P, Zucchetti M, Nath C, Attarbaschi A, Von Stackelberg A, Gokbuget N, Rizzari C, Conter V, Schrappe M, Boos J, Lanvers-Kaminsky C. Pre-existing antibodies against polyethylene glycol reduce asparaginase activities on first administration of pegylated E. coli asparaginase in children with acute lymphocytic leukemia. Haematologica. 2020. https://doi.org/10.3324/haematol.2020.258525.

    Article  PubMed Central  Google Scholar 

  55. Siebel C, Lanvers-Kaminsky C, Alten J, Smisek P, Nath CE, Rizzari C, Boos J, Wurthwein G. Impact of antibodies against polyethylene glycol on the pharmacokinetics of PEGylated asparaginase in children with acute lymphoblastic leukaemia: A population pharmacokinetic approach. Eur J Drug Metab Pharmacokinet. 2021. https://doi.org/10.1007/s13318-021-00741-w.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu Y, Smith CA, Panetta JC, Yang W, Thompson LE, Counts JP, Molinelli AR, Pei D, Kornegay NM, Crews KR, Swanson H, Cheng C, Karol SE, Evans WE, Inaba H, Pui CH, Jeha S, Relling MV. antibodies predict pegaspargase allergic reactions and failure of rechallenge. J Clin Oncol. 2019;37(23):2051–61. https://doi.org/10.1200/JCO.18.02439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Albertsen BK, Harila-Saari A, Jahnukainen K, Lahteenmaki P, Riikonen P, Mottonen M, Lausen B. Asparaginase treatment in infants with acute lymphoblastic leukemia; pharmacokinetics and asparaginase hypersensitivity in Interfant-06. Leuk Lymphoma. 2019;60(6):1469–75. https://doi.org/10.1080/10428194.2018.1538507.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Author LB would like to thank Nienke Wieringa for collecting PK data collection.

Author VM would like to thank Tim Lammens and the Asparaginase therapeutic drug monitoring laboratorium for performing the PK analyses and all involved hospitals for data collection.

CR wishes to thank the Comitato ML Verga (Monza, Italy), the Association “Insieme ad Andrea si può” ONLUS (Jerago con Orago, Varese, Italy), the MBBM Foundation (Monza, Italy), the Istituto Mario Negri for Pharmacological Researches (Milano, Italy) and the Italian Association of Pediatric Hematology and Oncology (AIEOP) for the support provided to his researches on asparaginase preparations.

Funding

Author VM: This work was supported by the Cancer Plan Action 29 from the Belgian Federal Public Service of Health; the Flemisch League Against Cancer, vzw Kinderkankerfonds and the Clinical Research Fund of the Ghent University Hospital.

Author information

Authors and Affiliations

Authors

Contributions

LJB, RP, and IvdS were responsible for protocol development and implementation of the study. LJB, VM, YL, BKA, BZS, CR, RSK, RP, and IvdS were responsible for enrolling patients. Acquisition of the data was performed by all authors. Population PK modelling was performed by LJB, AH supervised this work. The first draft of the manuscript was written by LJB, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Inge M. van der Sluis.

Ethics declarations

Conflict of Interest

LJB: Speaker fee from Servier and Clinigen.

VM: Participation in advisory boards of Servier and Clinigen, and travel grants from Servier and Jazz Pharmaceuticals.

BKA: Participation in advisory boards of Jazz Pharmaceuticals.

RP: Participation in advisory boards of Servier, Jazz Pharmaceuticals and Clinigen. And speaker fee from Servier and Clinigen.

IvdS: Participation in advisory boards of Servier, Jazz Pharmaceuticals and Clinigen. And speaker fee from Servier and Clinigen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 277 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brigitha, L.J., Mondelaers, V., Liu, Y. et al. Pharmacokinetics of PEGasparaginase in Infants with Acute Lymphoblastic Leukemia. Pharm Res 41, 711–720 (2024). https://doi.org/10.1007/s11095-024-03693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03693-3

Keywords

Navigation