Skip to main content

Advertisement

Log in

Predicting Drug-Drug Interactions Involving Rifampicin Using a Semi-mechanistic Hepatic Compartmental Model

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Aims

To develop a semi-mechanistic hepatic compartmental model to predict the effects of rifampicin, a known inducer of CYP3A4 enzyme, on the metabolism of five drugs, in the hope of informing dose adjustments to avoid potential drug-drug interactions.

Methods

A search was conducted for DDI studies on the interactions between rifampicin and CYP substrates that met specific criteria, including the availability of plasma concentration–time profiles, physical and absorption parameters, pharmacokinetic parameters, and the use of healthy subjects at therapeutic doses. The semi-mechanistic model utilized in this study was improved from its predecessors, incorporating additional parameters such as population data (specifically for Chinese and Caucasians), virtual individuals, gender distribution, age range, dosing time points, and coefficients of variation.

Results

Optimal parameters were identified for our semi-mechanistic model by validating it with clinical data, resulting in a maximum difference of approximately 2-fold between simulated and observed values. PK data of healthy subjects were used for most CYP3A4 substrates, except for gilteritinib, which showed no significant difference between patients and healthy subjects. Dose adjustment of gilteritinib co-administered with rifampicin required a 3-fold increase of the initial dose, while other substrates were further tuned to achieve the desired drug exposure.

Conclusions

The pharmacokinetic parameters AUCR and CmaxR of drugs metabolized by CYP3A4, when influenced by Rifampicin, were predicted by the semi-mechanistic model to be approximately twice the empirically observed values, which suggests that the semi-mechanistic model was able to reasonably simulate the effect. The doses of four drugs adjusted via simulation to reduce rifampicin interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Kurkinen KJ, Neuvonen PJ, Olkkola KT. Rifampicin has a profound effect on the pharmacokinetics of oral S-ketamine and less on intravenous S-ketamine. Basic Clin Pharmacol Toxicol. 2012;111(5):325–32.

    Article  CAS  PubMed  Google Scholar 

  2. Li X, Wu K, Zhou Z, Jia R, Zhao Y, Li J, et al. Predicting fluconazole drug-drug interactions using a physiologically based pharmacokinetic (PBPK) model. J Infect Dis Ther. 2022;10(4):1000504. Availability at: https://www.omicsonline.org/open-access-pdfs/predicting-fluconazole-drugdrug-interactions-using-a-physiologicallybased-pharmacokinetic-pbpk-model.pdf

  3. Zhang F, Zhou Y, Wu N, Jia R, Liu A, Liu B, Zhou Z, Hu H, Han Z, Ye X. In silico prediction of bioequivalence of Isosorbide Mononitrate tablets with different dissolution profiles using PBPK modeling and simulation. Eur J Pharm Sci. 2021;157:0928–87.

    Article  Google Scholar 

  4. Kato M, Shitara Y, Sato H, Yoshisue K, Hirano M, Ikeda T, Sugiyama Y. The quantitative prediction of CYP-mediated drug interaction by physiologically based pharmacokinetic modeling. Pharm Res. 2008;25(8):1891–901.

    Article  CAS  PubMed  Google Scholar 

  5. Kato M, Chiba K, Horikawa M, Sugiyama Y. The quantitative prediction of in vivo enzyme-induction caused by drug exposure from in vitro information on human hepatocytes. Drug Metab Pharmacokinet. 2005;20(4):236–43.

    Article  CAS  PubMed  Google Scholar 

  6. Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT: Pharmacometrics & Systems Pharmacology. 2013;2(8):1–12.

    Google Scholar 

  7. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

    Article  CAS  PubMed  Google Scholar 

  8. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.

    Article  CAS  PubMed  Google Scholar 

  9. Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism‐based prediction of volume of distribution. Journal of Pharmaceutical Sciences. 2002;91(1):129–56.

    Article  CAS  PubMed  Google Scholar 

  10. Acocella G. Pharmacokinetics and metabolism of rifampin in humans. Reviews of Infectious Diseases. 1983;5(Supplement_3):S428–32.

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Xu H, Pawlak S, James LP, Peltz G, Lee K, Ginman K, Bergeron M, Pithavala YK. The effect of rifampin on the pharmacokinetics and safety of lorlatinib: results of a phase one, open-label, crossover study in healthy participants. Adv Ther. 2020;37(2):745–58.

    Article  CAS  PubMed  Google Scholar 

  12. James AJ, Smith CC, Litzow M, Perl AE, Altman JK, Shepard D, Kadokura T, Souda K, Patton M, Lu Z, Liu C, Moy S, Levis MJ, Bahceci E. Pharmacokinetic Profile of Gilteritinib: A Novel FLT-3 Tyrosine Kinase Inhibitor. Clin Pharmacokinet. 2020;59(10):1273–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M. Effects of rifampin on the pharmacokinetics of a single dose of istradefylline in healthy subjects. J Clin Pharmacol. 2018;58(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen L, Holland J, Miles D, Engel C, Benrimoh N, O’Reilly T, Lacy S. Pharmacokinetic (PK) drug interaction studies of cabozantinib: effect of CYP3A inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J Clin Pharmacol. 2015;55(9):1012–23.

    Article  CAS  PubMed  Google Scholar 

  15. Loos U, Musch E, Jensen J, Mikus G, Schwabe H, Eichelbaum M. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr. 1985;63(23):1205–11.

    Article  CAS  PubMed  Google Scholar 

  16. US Food and Drug Administration. Label of LORBRENA® (Lorlatinib) Tablets. 2021. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210868s004lbl.pdf. Accessed 13 Mar 2024

  17. Gerner B, Scherf-Clavel O. Physiologically based pharmacokinetic modelling of cabozantinib to simulate enterohepatic recirculation, drug–drug interaction with rifampin and liver impairment. Pharmaceutics. 2021;13(6):778–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. US Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review of S-ketamine Tablet. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211243Orig1s000ClinPharmR.pdf. Accessed 13 Mar 2024.

  19. US Food and Drug Administration. Multi-discipline Review of Gilteritinib Table. 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211349Orig1s000MultidisciplineR.pdf. Accessed 13 Mar 2024.

  20. US Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review of Cabozantinib Table. 2016. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/208692Orig1s000ClinPharmR.pdf. Accessed 13 Mar 2024

  21. US Food and Drug Administration. Clinical Pharmacology Review of Istradefylline Table. 2019. Available at https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/022075Orig1s000ClinPharmR.pdf. Accessed 13 Mar 2024

  22. Baneyx G, Parrott N, Meille C, Iliadis A, Lavé T. Physiologically based pharmacokinetic modeling of CYP3A4 induction by rifampicin in human: influence of time between substrate and inducer administration. Eur J Pharm Sci. 2014;56:1–15.

    Article  CAS  PubMed  Google Scholar 

  23. US Food and Drug Administration. Multi-discipline Review of Lorlatinib Table. 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210868Orig1s000MultidisciplineR.pdf. Accessed 13 Mar 2024

  24. US Food and Drug Administration. Clinical Review of Istradefylline Tablet. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/022075Orig1s000MedR.pdf. Accessed 13 Mar 2024

  25. Online Drugbank. Pharmacokinetic information of Cabozantinib. 2022. Available at: https://go.drugbank.com/drugs/DB08875. Accessed 13 Mar 2024

  26. Ford S, Sutton K, Lou Y, Zhang Z, Tenorio A, Trezza C, Patel P, Spreen W. Effect of rifampin on the single-dose pharmacokinetics of oral cabotegravir in healthy subjects. Antimicrob Agents Chemother. 2017;61(10):e00487-e417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. CN Center for Drug Evaluation, NMPA. 药物相互作用研究技术指导原则(试行). 2021. Available at: https://www.cde.org.cn/zdyz/downloadAtt?idCODE=548005195453f85d07c1e9b581e30854. Accessed 13 Mar 2024

  28. Pulte ED, Norsworthy KJ, Wang Y, Xu Q, Qosa H, Gudi R, Przepiorka D, Fu W, Okusanya OO, Goldberg KB. FDA approval summary: gilteritinib for relapsed or refractory acute myeloid leukemia with a FLT3 mutation. Clin Cancer Res. 2021;27(13):3515–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J, Wu K, Li X, Long S, Zhou Z,  Zhao Y, et al. Quantifying Induction/Inhibition Effects on Fuzuloparib Using a Physiologically Based Pharmaco-Kinetic (PBPK) model. J Clin Exp Pathol. 2022;12(4):1000415. Available at: https://www.omicsonline.org/open-access-pdfs/quantifying-inductioninhibition-effects-on-fuzuloparib-using-a-physiologically-based-pharmacokinetic-pbpk-model.pdf

  30. Zhang F, Jia R, Gao H, Wu X, Liu B, Wang H. In silico prediction of bioequivalence of Isosorbide Mononitrate tablets with different dissolution profiles using PBPK modeling and simulation. Eur J Pharm Sci. 2021;157: 105618.

    Article  CAS  PubMed  Google Scholar 

  31. Jia R, Zhang F, Wu N, Xu W, Gao H, Liu B, Wang H. Accelerating Development of Benziamidazole-Class Proton Pump Inhibitors: A Mechanism-Based PK/PD Model to Optimize Study Design with Ilaprazole as a Case Drug. Pharmaceutics. 2021;13(3):392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang F, Jia R, Gao H, Wu X, Liu B, Wang H. In silico modeling and simulation to guide bioequivalence testing for oral drugs in a virtual population. Clin Pharmacokinet. 2021;60(11):1373–85.

    Article  PubMed  Google Scholar 

  33. Zhang J, Wu K, B Liu, Hou S, Li X, Ye X, Liu J, He Q. Bioequivalence study of ipratropium bromide inhalation aerosol using PBPK modelling. Frontiers in Medicine. 2023;10:1056318.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu X, Zhang F, Yu M, Ding F, Luo J, Liu B, Wang H. Semi-PBPK modeling and simulation to evaluate the local and systemic pharmacokinetics of OC-01 (Varenicline) nasal spray. Front Pharmacol. 2022;13: 910629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chao P, Uss AS, Cheng KC. Use of intrinsic clearance for prediction of human hepatic clearance. Expert Opin Drug Metab Toxicol. 2010;6(2):189–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JL thanks the sponsorship from the Innovation Fund of the Graduate School of Wuhan Institute of Technology (CX2022066). The authors also thank Dr Hongyun Wang at Peking Union Medical College Hospital for providing guidance and scientific suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Bo Liu; Data curation, Jingxi Li, Xiong Jin, Mengjun Zhang; Formal analysis, Keheng Wu Xinyi, Wu, Zhijun Huang; Methodology, Keheng Wu; Project administration, Bo Liu; Software, Keheng Wu & Youni Zhao; Validation, Jingxi Li; Writing-original draft, Jingxi Li; Writing review & editing, Zhou Zhou, Xue Li, Sihui Long and Jack Liu.

Corresponding author

Correspondence to Bo Liu.

Ethics declarations

Conflict of Interests

Xinyi Wu, Zhijun Huang, Zhou Zhou, Xue Li, Keheng Wu, Youni Zhao, Jack Liu were employees of Yinghan Pharmaceutical Technology (Shanghai) at the time of study conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, X., Wu, K. et al. Predicting Drug-Drug Interactions Involving Rifampicin Using a Semi-mechanistic Hepatic Compartmental Model. Pharm Res 41, 699–709 (2024). https://doi.org/10.1007/s11095-024-03691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03691-5

Keywords

Navigation