Skip to main content

Advertisement

Log in

Development of Sustained Release System Based on High Water-Absorbable Gel Formation Using Croscarmellose Sodium, Alkaline Excipients and HPMC (ACSH SR System); Novel Application of Croscarmellose Sodium as a Gel Former

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Croscarmellose sodium, generally used as a superdisintegrant in pharmaceutical formulations, is hydrolyzed to form the gel structure under basic pH conditions. Utilizing this property of croscarmellose sodium, we developed a novel sustained release (SR) system.

Methods

Immediate release (IR) and SR tablets containing croscarmellose sodium, alkaline excipients and/or hydroxypropyl methylcellulose (HPMC) were prepared and examined for wet strength and in vitro drug release behavior. In vivo oral drug absorption was evaluated for IR tablets, HPMC tablets and our novel SR tablets in fasted Beagle dogs.

Results

To form the gel structure even under the physiological condition, alkaline excipients were added into the formulation containing croscarmellose sodium. Furthermore, HPMC was used to make the gel structure strong enough against mechanical destructive forces. The novel alkalized croscarmellose sodium-HPMC (ACSH) SR tablet, consisting of croscarmellose sodium, alkaline excipients, and HPMC, successfully sustained the release of acetaminophen, ibuprofen, or nicardipine hydrochloride, compared with the IR tablets. The ACSH SR system provided a better release of acetaminophen than the HPMC tablet without croscarmellose sodium in the release study using a small volume of liquid, suggesting that substantial release and subsequent absorption would be expected in the distal intestinal segments after oral dosing. The in vivo oral absorption study revealed that the ACSH SR system successfully suppressed and prolonged the plasma concentrations of acetaminophen.

Conclusion

This novel ACSH SR system prepared with croscarmellose sodium, alkaline excipients, and HPMC, would be a promising SR formulation for enabling substantial drug absorption in the distal intestinal segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Shen SI, Jasti BR, Li X. Chapter 22: Design of controlled-release drug delivery systems. In: Myer K, editor. Standard handbook of biomedical engineering and design, New York, The McGraw-Hill Companies, Inc. 2003.

  2. Nokhodchi A, Raja S, Patel P, Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. BioImpacts. 2012;2:175–87. https://doi.org/10.5681/bi.2012.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73:121–36. https://doi.org/10.1016/s0168-3659(01)00248-6.

    Article  CAS  PubMed  Google Scholar 

  4. Ford JL, Mitchell K, Rowe P, Armstrong DJ, Elliott PNC, Rostron C, et al. Mathematical modelling of drug release from hydroxypropylmethylcellulose matrices: effect of temperature. Int J Pharm. 1991;71:95–104. https://doi.org/10.1016/0378-5173(91)90071-U.

    Article  CAS  Google Scholar 

  5. Sako K, Mizumoto T, Kajiyama A, Ohmura T. Influence of physical factors in gastrointestinal tract on acetaminophen release from controlled-release tablets in fasted dogs. Int J Pharm. 1996;137:225–32. https://doi.org/10.1016/0378-5173(96)04524-3.

    Article  CAS  Google Scholar 

  6. Michel MC, Korstanje C, Krauwinkel W, Kuipers M. The pharmacokinetic profile of tamsulosin oral controlled absorption system (OCAS®). Eur Urol Suppl. 2005;4:15–24. https://doi.org/10.1016/j.eursup.2004.11.002.

    Article  CAS  Google Scholar 

  7. Hodges LA, Sime KA, Creech LA, Connolly SM, Barclay ST, Kwon MC, et al. Pharmacoscintigraphy confirms consistent tamsulosin release from a novel triple-layered tablet. Int J Pharm. 2013;454:41–6. https://doi.org/10.1016/j.ijpharm.2013.06.065.

    Article  CAS  PubMed  Google Scholar 

  8. Park JS, Shim JY, Park JS, Lee MJ, Kang JM, Lee SH, et al. Formulation variation and in vitro-in vivo correlation for a rapidly swellable three-layered tablet of tamsulosin HCl. Chem Pharm Bull (Tokyo). 2011;59:529–35. https://doi.org/10.1248/cpb.59.529.

    Article  CAS  PubMed  Google Scholar 

  9. Swarbrick J, Boylan JC. Encyclopedia of pharmaceutical technology. Marcel dekker, Inc. 1990;20:269–70.

  10. Shangraw RF, Mitrevej A, Shah M. A new era of tablet disintegrants. Pharm Technol. 1980;4:49–57.

    CAS  Google Scholar 

  11. Balasubramaniam J, Bindu K, Rao VU, Ray D, Haldar R, Brzeczko AW. Effect of superdisintegrants on dissolution of cationic drugs. Dissolut Technol. 2008;15:18–25. https://doi.org/10.14227/DT150208P18.

    Article  CAS  Google Scholar 

  12. Freeman C, Weiner ML, Kotkoskie LA, Borzelleca J, Butt M. Subchronic and developmental toxicity studies in rats with Ac-di-sol croscarmellose sodium. Int J Toxicol. 2003;22:149–57. https://doi.org/10.1080/10915810305108.

    Article  CAS  PubMed  Google Scholar 

  13. Bindra DS, Stein D, Pandey P, Barbour N. Incompatibility of croscarmellose sodium with alkaline excipients in a tablet formulation. Pharm Dev Technol. 2014;19:285–9. https://doi.org/10.3109/10837450.2013.778869.

    Article  CAS  PubMed  Google Scholar 

  14. Sutton SC. Role of physiological intestinal water in oral absorption. AAPS J. 2009;11:277–85. https://doi.org/10.1208/s12248-009-9087-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang C, Zhai B, Guo H, Wang P, Liu Z, Gu H, et al. In vivo measurement of gastric fluid volume in anesthetized dogs. J Drug Deliv Sci Technol. 2020;55: 101488. https://doi.org/10.1016/j.jddst.2019.101488.

    Article  CAS  Google Scholar 

  16. Schiller C, Fröhlich CP, Giessmann T, Siegmund W, Mönnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22:971–9. https://doi.org/10.1111/j.1365-2036.2005.02683.x.

    Article  CAS  PubMed  Google Scholar 

  17. Varelas CG, Dixon DG, Steiner CA. Zero-order release from biphasic polymer hydrogels. J Control Rel. 1995;34:185–92. https://doi.org/10.1016/0168-3659(94)00085-9.

    Article  CAS  Google Scholar 

  18. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–23.

    CAS  PubMed  Google Scholar 

  19. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33. https://doi.org/10.1016/s0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  20. Paarakh MP, Jose PA, Setty C, Christoper GP. Release kinetics – concepts and applications. IJPRT. 2018;8:12–20.

    Google Scholar 

  21. Mulye N, Turco S. A simple model based on first order kinetics to explain release of highly water soluble drugs from porous dicalcium phosphate dihydrate matrices. Drug Dev Ind Pharm. 1995;21:943–53. https://doi.org/10.3109/03639049509026658.

    Article  CAS  Google Scholar 

  22. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9. https://doi.org/10.1002/jps.2600521210.

    Article  CAS  PubMed  Google Scholar 

  23. Shoaib MH, Tazeen J, Merchant HA, Yousuf RI. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci. 2006;19:119–24.

    CAS  PubMed  Google Scholar 

  24. Korsmeyer RW, Gurny R, Doelker E, Peppas Buri P, NA,. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9.

    Article  CAS  Google Scholar 

  25. Langenbucher F. Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24:979–81. https://doi.org/10.1111/j.2042-7158.1972.tb08930.x.

    Article  CAS  PubMed  Google Scholar 

  26. Hixon AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23:923–31. https://doi.org/10.1021/ie50260a018.

    Article  Google Scholar 

  27. Kipcak AS, Ismail O, Doymaz I, Piskin S. Modeling and investigation of the swelling kinetics of acrylamide-sodium acrylate hydrogel. J Chem. 2014:1–8. https://doi.org/10.1155/2014/281063

  28. Jastram A, Lindner T, Luebbert C, Sadowski G, Kragl U. Swelling and diffusion in polymerized ionic liquids-based hydrogels. Polymers. 2021;13:1834–50. https://doi.org/10.3390/polym13111834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: a review. Iran Polym J. 2010;19:375–98.

    CAS  Google Scholar 

  30. Peleg M. An empirical model for the description of moisture sorption curves. J Food Sci. 1988;53:1216–7. https://doi.org/10.1111/j.1365-2621.1988.tb13565.x.

    Article  Google Scholar 

  31. Turhan M, Sayar S, Gunasekaran S. Application of Peleg model to study water absorption in chickpea during soaking. J Food Eng. 2002;53:153–9. https://doi.org/10.1016/S0260-8774(01)00152-2.

    Article  Google Scholar 

  32. U.S. Food and Drug Administration. Guidance for Industry Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations [Internet]; 1997. https://www.fda.gov/media/70939/download. Accessed 13 Jun 2023. Center for Drug Evaluation and Research (CDER).

  33. Sako K, Nakashima H, Sawada T, Fukui M. Relationship between gelation rate of controlled-release acetaminophen tablets containing polyethylene oxide and colonic drug release in dogs. Pharm Res. 1996;13:594–8. https://doi.org/10.1023/a:1016006423601.

    Article  CAS  PubMed  Google Scholar 

  34. Iitsuka H, Tokuno T, Amada Y, Matsushima H, Katashima M, Sawamoto T, et al. Pharmacokinetics of mirabegron, a β3-adrenoceptor agonist for treatment of overactive bladder, in healthy Japanese male subjects: results from single- and multiple-dose studies. Clin Drug Investig. 2014;34:27–35. https://doi.org/10.1007/s40261-013-0146-1.

    Article  CAS  PubMed  Google Scholar 

  35. Sawada T, Sako K, Fukui M, Yokohama S, Hayashi M. A new index, the core erosion ratio, of compression-coated timed-release tablets predicts the bioavailability of acetaminophen. Int J Pharm. 2003;265:55–63. https://doi.org/10.1016/s0378-5173(03)00405-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Masato Gomi; Conceptualization, Methodology, Writing, Visualization Acquisition, Analysis, and interpretation of data: Naoya Mizutani; Acquisition, Analysis, and interpretation of data: Ryoutarou Senoo; Acquisition of data: Noriaki Matsubara; Acquisition of data: Ayahisa Watanabe; Interpretation of data: Masato Maruyama; Interpretation of data: Go Kimura; Interpretation of data: Kazutaka Higaki; Conceptualization, Methodology, Writing, Visualization, interpretation of data, and Supervision.

Corresponding author

Correspondence to Masato Gomi.

Ethics declarations

Disclosure of Potential Conflict of Interest

M. G., N. M., R. S., N. M., A. W., and G. K., are employees of Shionogi & Co., Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomi, M., Mizutani, N., Senoo, R. et al. Development of Sustained Release System Based on High Water-Absorbable Gel Formation Using Croscarmellose Sodium, Alkaline Excipients and HPMC (ACSH SR System); Novel Application of Croscarmellose Sodium as a Gel Former. Pharm Res 40, 3073–3086 (2023). https://doi.org/10.1007/s11095-023-03630-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03630-w

Keywords

Navigation