Skip to main content

Advertisement

Log in

Pharmaceutical and Immunological Evaluation of Cholera Toxin A1 Subunit as an Adjuvant of Hepatitis B Vaccine Microneedles

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

For successful delivery of a solid vaccine formulation into the skin using microneedles, the solubility of an adjuvant should be considered because the decrease in the dissolution rate by the addition of adjuvant decreases the delivery efficiency of the vaccine.

Methods

In this study, cholera toxin A subunit 1 (CTA1) was examined as an adjuvant to Hepatitis B vaccine (HBV) microneedles because of its good water solubility, improved safety, and positive effect as shown in intramuscular administration of a liquid vaccine.

Results

All solid formulations with CTA 1 dissolved in in vivo mouse skin within 30 min, and they were successfully delivered into the skin. In experiments with mice, the addition of CTA1 led to improved IgG immune response compared to the use of an aluminum hydroxide–based formulation and intramuscular administration of HBV. In addition, CTA1 induced CD8 + T cell response as much as in which the aluminum hydroxide–based formulation induced.

Conclusions

CTA1 is an adjuvant that satisfies both the delivery efficiency and the immunological characteristics required for vaccine microneedles. CTA1 will be used as a potential adjuvant through vaccine microneedles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

Alum:

Aluminum hydroxide

CT:

Cholera toxin

CTA1:

Cholera toxin A subunit 1

HBV microneedle:

Hepatitis B vaccine microneedle

HBsAg:

Hepatitis B surface antigen

HA:

Hyaluronic acid

HBsAg-microneedles:

Microneedles coated with a formulation of HBsAg only

HBsAg-Alum-microneedles:

Microneedles coated with a formulation of HBsAg and Alum

HBsAg-CTA1-microneedles:

Microneedles coated with a formulation of HBsAg and CTA1

HRP:

Horseradish peroxidase

ELISA:

Enzyme-linked immunosorbent assay

ELISpot:

Enzyme-linked immunosorbent spot

OD:

Optical density

SDS-PAGE:

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

References

  1. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58.

    Article  CAS  PubMed  Google Scholar 

  2. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans) dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–55.

    Article  PubMed  Google Scholar 

  3. Bagley KC, Lewis GK, Fouts TR. Adjuvant activity of the catalytic A1 domain of cholera toxin for retroviral antigens delivered by GeneGun. Clin Vaccine Immunol. 2011;18(6):922–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verbaan F, Bal S, Van den Berg D, Groenink W, Verpoorten H, Lüttge R, Bouwstra J. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release. 2007;117(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  5. Kim JS, Choi J-A, Kim JC, Park H, Yang E, Park JS, Song M, Park J-H. Microneedles with dual release pattern for improved immunological efficacy of Hepatitis B vaccine. Int J Pharm. 2020;591:119928.

    Article  CAS  PubMed  Google Scholar 

  6. Jeong H-R, Bae J-Y, Park J-H, Baek S-K, Kim G, Park M-S, Park J-H. Preclinical study of influenza bivalent vaccine delivered with a two compartmental microneedle array. J Control Release. 2020;324:280–8.

    Article  CAS  PubMed  Google Scholar 

  7. Song J-M, Kim Y-C, Lipatov AS, Pearton M, Davis CT, Yoo D-G, Park K-M, Chen L-M, Quan F-S, Birchall JC. Microneedle delivery of H5N1 influenza virus-like particles to the skin induces long-lasting B-and T-cell responses in mice. Clin Vaccine Immunol. 2010;17(9):1381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee KJ, Jeong SS, Roh DH, Kim DY, Choi H-K, Lee EH. A practical guide to the development of microneedle systems–In clinical trials or on the market. Int J Pharm. 2020;573:118778.

    Article  CAS  PubMed  Google Scholar 

  9. Halder J, Gupta S, Kumari R, Gupta GD, Rai VK. Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery. J Pharm Innov. 2020:1–8.

  10. Ingrole RS, Azizoglu E, Dul M, Birchall JC, Gill HS, Prausnitz MR. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials. 2021;267:120491.

    Article  CAS  PubMed  Google Scholar 

  11. Kang N-W, Kim S, Lee J-Y, Kim K-T, Choi Y, Oh Y, Kim J, Kim D-D, Park J-H. Microneedles for drug delivery: recent advances in materials and geometry for preclinical and clinical studies. Expert Opin Drug Deliv. 2021;18(7):929–47.

    Article  CAS  PubMed  Google Scholar 

  12. Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK. Microneedle-based vaccines. Curr Top Microbiol Immunol. 2009;333:369–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Zahrani S, Zaric M, McCrudden C, Scott C, Kissenpfennig A, Donnelly RF. Microneedle-mediated vaccine delivery: harnessing cutaneous immunobiology to improve efficacy. Expert Opin Drug Deliv. 2012;9(5):541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guillard O, Fauconneau B, Pineau A, Marrauld A, Bellocq J-P, Chenard M-P. Aluminium overload after 5 years in skin biopsy following post-vaccination with subcutaneous pseudolymphoma. J Trace Elem Med Biol. 2012;26(4):291–3.

    Article  CAS  PubMed  Google Scholar 

  15. Bian Q, Xu YH, Ma XL, Hu JY, Gu YT, Wang RX, Yuan AR, Hu WT, Huang LL, Li N. Differential dual-release bilayer microneedles loaded with aluminum adjuvants as a safe and effective vaccine platform. Adv Funct Mater. 2022;32(29):2201952.

    Article  CAS  Google Scholar 

  16. Portuondo DL, Batista-Duharte A, Ferreira LS, de Andrade CR, Quinello C, Téllez-Martínez D, de Aguiar Loesch ML, Carlos IZ. Comparative efficacy and toxicity of two vaccine candidates against Sporothrix schenckii using either Montanide™ Pet Gel A or aluminum hydroxide adjuvants in mice. Vaccine. 2017;35(34):4430–6.

    Article  CAS  PubMed  Google Scholar 

  17. Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82(5):488–96.

    Article  CAS  PubMed  Google Scholar 

  18. Butler N, Voyce M, Burland W, Hilton ML. Advantages of aluminium hydroxide adsorbed combined diphtheria, tetanus, and pertussis vaccines for the immunization of infants. Br Med J. 1969;1(5645):663–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Pravetoni M, Bhayana B, Pentel PR, Wu MX. High immunogenicity of nicotine vaccines obtained by intradermal delivery with safe adjuvants. Vaccine. 2012;31(1):159–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clausi AL, Merkley SA, Carpenter JF, Randolph TW. Inhibition of aggregation of aluminum hydroxide adjuvant during freezing and drying. J Pharm Sci. 2008;97(6):2049–61.

    Article  CAS  PubMed  Google Scholar 

  21. Wolff L, Flemming J, Schmitz R, Gröger K, Müller-Goymann C. Protection of aluminum hydroxide during lyophilisation as an adjuvant for freeze-dried vaccines. Colloids Surf A: Physicochem Eng Asp. 2008;330(2–3):116–26.

    Article  CAS  Google Scholar 

  22. Hirschberg H, van Kuijk S, Loch J, Jiskoot W, Bouwstra J, Kersten G, Amorij J-P. A combined approach of vesicle formulations and microneedle arrays for transcutaneous immunization against hepatitis B virus. Eur J Pharm Sci. 2012;46(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Oh Y-J, Cha H-R, Hwang SJ, Kim D-S, Choi Y-J, Kim Y-S, Shin Y-R, Nguyen TT, Choi S-O, Lee JM. Ovalbumin and cholera toxin delivery to buccal mucus for immunization using microneedles and comparison of immunological response to transmucosal delivery. Drug Deliv Transl Res. 2021;11(4):1390–400.

    Article  CAS  PubMed  Google Scholar 

  24. Shin J-H, Noh J-Y, Kim K-H, Park J-K, Lee J-H, Jeong SD, Jung D-Y, Song C-S, Kim Y-C. Effect of zymosan and poly (I: C) adjuvants on responses to microneedle immunization coated with whole inactivated influenza vaccine. J Control Release. 2017;265:83–92.

    Article  CAS  PubMed  Google Scholar 

  25. Duong HTT, Yin Y, Thambi T, Nguyen TL, Phan VG, Lee MS, Lee JE, Kim J, Jeong JH, Lee DS. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials. 2018;185:13–24.

    Article  CAS  PubMed  Google Scholar 

  26. Weldon WC, Zarnitsyn VG, Esser ES, Taherbhai MT, Koutsonanos DG, Vassilieva EV, Skountzou I, Prausnitz MR, Compans RW. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PLoS ONE. 2012;7(7):e41501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park S, Lee Y, Kwon Y-M, Lee Y-T, Kim K-H, Ko E-J, Jung JH, Song M, Graham B, Prausnitz MR. Vaccination by microneedle patch with inactivated respiratory syncytial virus and monophosphoryl lipid A enhances the protective efficacy and diminishes inflammatory disease after challenge. PLoS ONE. 2018;13(10):e0205071.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, Raj VS, Epperly MW, Klimstra WB, Haagmans BL. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine. 2020;55:102743.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leone M, Mönkäre J, Bouwstra JA, Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm Res. 2017;34(11):2223–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Donnelly RF, Garland MJ, Morrow DI, Migalska K, Singh TRR, Majithiya R, Woolfson AD. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J Control Release. 2010;147(3):333–41.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao X, Coulman SA, Hanna SJ, Wong FS, Dayan CM, Birchall JC. Formulation of hydrophobic peptides for skin delivery via coated microneedles. J Control Release. 2017;265:2–13.

    Article  CAS  PubMed  Google Scholar 

  32. Paredes AJ, McKenna PE, Ramöller IK, Naser YA, Volpe-Zanutto F, Li M, Abbate M, Zhao L, Zhang C, Abu-Ershaid JM. Microarray patches: poking a hole in the challenges faced when delivering poorly soluble drugs. Adv Funct Mater. 2021;31(1):2005792.

    Article  CAS  Google Scholar 

  33. Ono A, Ito S, Sakagami S, Asada H, Saito M, Quan Y-S, Kamiyama F, Hirobe S, Okada N. Development of novel faster-dissolving microneedle patches for transcutaneous vaccine delivery. Pharmaceutics. 2017;9(3):27.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Arya J, Henry S, Kalluri H, McAllister DV, Pewin WP, Prausnitz MR. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017;128:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeong H-R, Lee H-S, Choi I-J, Park J-H. Considerations in the use of microneedles: pain, convenience, anxiety and safety. J Drug Target. 2017;25(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  36. Bharati K, Ganguly NK. Cholera toxin: a paradigm of a multifunctional protein. Indian J Med Res. 2011;133(2):179.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lycke N. The mechanism of cholera toxin adjuvanticity. Res Immunol. 1997;148(8):504–20.

    Article  CAS  PubMed  Google Scholar 

  38. Rappuoli R, Pizza M, Douce G, Dougan G. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol Today. 1999;20(11):493–500.

    Article  CAS  PubMed  Google Scholar 

  39. Kenneth C, Bagley GKL, Timothy R. Fouts. Adjuvant activity of the catalytic A1 domain of cholera toxin for retroviral antigens delivered by genegun. Clin Vaccine Immunol. 2011;18:922–930.

  40. Ding Z, Van Riet E, Romeijn S, Kersten G, Jiskoot W, Bouwstra J. Immune modulation by adjuvants combined with diphtheria toxoid administered topically in BALB/c mice after microneedle array pretreatment. Pharm Res. 2009;26(7):1635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Menon I, Bagwe P, Gomes KB, Bajaj L, Gala R, Uddin MN, D’souza MJ, Zughaier SM. Microneedles: a new generation vaccine delivery system. Micromachines. 2021;12(4):435.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim S-H, Jang Y-S. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res. 2017;6(1):15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eliasson DG, El Bakkouri K, Schön K, Ramne A, Festjens E, Löwenadler B, Fiers W, Saelens X, Lycke N. CTA1-M2e-DD: a novel mucosal adjuvant targeted influenza vaccine. Vaccine. 2008;26(9):1243–52.

    Article  CAS  PubMed  Google Scholar 

  44. Lycke N, Bemark M. Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunol. 2010;3(6):556–66.

    Article  CAS  PubMed  Google Scholar 

  45. Shim B-S, Cheon IS, Lee E, Park S-M, Choi Y, Jung D-I, Yang E, Choi J-A, Chun JY, Kim J-O. Development of safe and non-self-immunogenic mucosal adjuvant by recombinant fusion of cholera toxin A1 subunit with protein transduction domain. J Immunol Res. 2018;2018:1–11.

    Article  Google Scholar 

  46. Su F, Patel GB, Hu S, Chen W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum Vaccines Immunother. 2016;12(4):1070–9.

    Article  Google Scholar 

  47. Nguyen TT, Choi J-A, Kim JS, Park H, Yang E, Lee WJ, Baek S-K, Song M, Park J-H. Skin immunization with third-generation hepatitis B surface antigen using microneedles. Vaccine. 2019;37(40):5954–61.

    Article  CAS  PubMed  Google Scholar 

  48. Kool M, Fierens K, Lambrecht BN. Alum adjuvant: some of the tricks of the oldest adjuvant. J Med Microbiol. 2012;61(7):927–34.

    Article  CAS  PubMed  Google Scholar 

  49. Snapper CM, Paul WE. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987;236(4804):944–7.

    Article  CAS  PubMed  Google Scholar 

  50. Stevens TL, Bossie A, Sanders VM, Fernandez-Botran R, Coffman RL, Mosmann TR, Vitetta ES. Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature. 1988;334(6179):255–8.

    Article  CAS  PubMed  Google Scholar 

  51. Li X, Yang X, Jiang Y, Liu J. A novel HBV DNA vaccine based on T cell epitopes and its potential therapeutic effect in HBV transgenic mice. Int Immunol. 2005;17(10):1293–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Research Foundation of Korea (NRF) grants funded by Korea Ministry of Trade, Industry & Energy (MOTIE, 20014911 (Industrial Strategic Technology Development Program)), by Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) and funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HV22C0029).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.J., H.H.; Methodology & Investigation: K.G, S.G., P.J., J.W.; Software: M.J and G.W, K.J; Formal Analysis: B.S.; Writing & Draft Preparation: K.J., P.J., H.H.; Writing-review& Editing: all authors; Supervision: P.J., H.H.; Funding Acquisition: B.S., H.H. Data curation: H.H., P.J., P.J.

Corresponding authors

Correspondence to Manki Song or Jung-Hwan Park.

Ethics declarations

Conflict of Interest

PJH is an inventor of patents that have been licensed to companies developing microneedle-based products, is a shareholder of companies developing microneedle-based products.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JC., Choi, Ja., Park, H. et al. Pharmaceutical and Immunological Evaluation of Cholera Toxin A1 Subunit as an Adjuvant of Hepatitis B Vaccine Microneedles. Pharm Res 40, 3059–3071 (2023). https://doi.org/10.1007/s11095-023-03623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03623-9

Keywords

Navigation