Skip to main content

Advertisement

Log in

Effect of Food Viscosity on Drug Dissolution

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study was to investigate the effect of food viscosity on the dissolution rate of a drug. There are two types of viscosity, macroviscosity and microviscosity. Macroviscosity affects the diffusion layer thickness, whereas microviscosity affects the molecular diffusion coefficient. The mass transfer coefficient (kc) in the intrinsic dissolution rate (IDR) depends on the viscosity (η) as kc ∝ ηa (a is an exponent on η). In theory, for rotating flow over a disk, if a thickener increases only macroviscosity, a = -1/6, and if it increases both macroviscosity and microviscosity equally, a = -7/6.

Method

Benzocaine was used as a model drug. Hydroxypropyl cellulose (HPC) and methylcellulose (MC) were employed as control thickeners that increase only macroviscosity. Sucrose was employed as a control thickener for both macroviscosity and microviscosity. The FDA breakfast homogenate (BFH) was diluted with distilled water or 1 mM HCl with/without pepsin digestion. The IDR value was measured by the paddle-over-disk method.

Results

The η value of 30% BFH distilled water was 209 mPa∙s, about 300 times higher than distilled water. It was further increased by HCl (430 mPa∙s), and reduced by pepsin digestion (35 mPa∙s). The kc value was little affected by BFH (a = 0.00 to -0.09), slightly less than those in HPC (a = -0.19) and MC (a = -0.21). Sucrose decreased the kc value more significantly (a = -0.70).

Conclusion

The IDR and kc values of benzocaine were little affected by BFH, suggesting that BFH increased only macroviscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data of this study are available on request from the corresponding author.

References

  1. Nicolaides E, Symillides M, Dressman JB, Reppas C. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm Res. 2001;18:380–8.

    Article  CAS  PubMed  Google Scholar 

  2. Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J. 2010;12:397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sugano K. Biopharmaceutics modeling and simulations: theory, practice, methods, and applications. John Wiley & Sons; 2012.

  4. Li M, Zhao P, Pan Y, Wagner C. Predictive performance of physiologically based pharmacokinetic models for the effect of food on oral drug absorption: current status. CPT Pharmacomet Syst Pharmacol. 2018;7:82–9.

    Article  CAS  Google Scholar 

  5. Akiyama Y, Ito S, Fujita T, Sugano K. Prediction of negative food effect induced by bile micelle binding on oral absorption of hydrophilic cationic drugs. Eur J Pharm Sci. 2020;155:105543.

    Article  CAS  PubMed  Google Scholar 

  6. Yamaguchi T, Ikeda C, Sekine Y. Intestinal absorption of a. BETA.-adrenergic blocking agent nadolol. II Mechanism of the inhibitory effect on the intestinal absorption of nadolol by sodium cholate in rats. Chem Pharm Bull (Tokyo). 1986;34:3836–43.

    Article  CAS  PubMed  Google Scholar 

  7. Barnwell SG, Laudanski T, Dwyer M, Story MJ, Guard P, Cole S, et al. Reduced bioavailability of atenolol in man: the role of bile acids. Int J Pharm. 1993;89:245–50.

    Article  CAS  Google Scholar 

  8. Kawai Y, Fujii Y, Tabata F, Ito J, Metsugi Y, Kameda A, et al. Profiling and trend analysis of food effects on oral drug absorption considering micelle interaction and solubilization by bile Micelles. Drug Metab Pharmacokinet. 2011;26:180–91.

    Article  CAS  PubMed  Google Scholar 

  9. Berginc K, Trontelj J, Kristl A. Bio-relevant media to assess drug permeability: Sodium taurocholate and lecithin combination or crude bile? Int J Pharm. 2012;429:22–30.

    Article  CAS  PubMed  Google Scholar 

  10. Alvarez-Lorenzo C, Gomez-Amoza JL, Martınez-Pacheco R, Souto C, Concheiro A. Microviscosity of hydroxypropylcellulose gels as a basis for prediction of drug diffusion rates. Int J Pharm. 1999;180:91–103.

    Article  CAS  PubMed  Google Scholar 

  11. de Smidt JH, Offringa JC, Crommelin DJ. Dissolution kinetics of theophylline in aqueous polymer solutions. Int J Pharm. 1991;77:255–9.

    Article  Google Scholar 

  12. Radwan A, Ebert S, Amar A, Münnemann K, Wagner M, Amidon GL, et al. Mechanistic understanding of food effects: water diffusivity in gastrointestinal tract is an important parameter for the prediction of disintegration of solid oral dosage forms. Mol Pharm. 2013;10:2283–90.

    Article  CAS  PubMed  Google Scholar 

  13. Radwan A, Amidon GL, Langguth P. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity. Biopharm Drug Dispos. 2012;33:403–16.

    Article  CAS  PubMed  Google Scholar 

  14. Parojčić J, Vasiljević D, Ibrić S, Djurić Z. Tablet disintegration and drug dissolution in viscous media: Paracetamol IR tablets. Int J Pharm. 2008;355:93–9.

    Article  PubMed  Google Scholar 

  15. Nelson KG, Shah AC. Mass transport in dissolution kinetics I: Convective diffusion to assess the role of fluid viscosity under forced flow conditions. J Pharm Sci. 1987;76:799–802.

    Article  CAS  PubMed  Google Scholar 

  16. Dokoumetzidis A, Macheras P. A century of dissolution research: From Noyes and whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321:1–11.

    Article  CAS  PubMed  Google Scholar 

  17. Sugano K. Aqueous boundary layers related to oral absorption of a drug: From dissolution of a drug to carrier mediated transport and intestinal wall metabolism. Mol Pharm. 2010;7:1362–73.

    Article  CAS  PubMed  Google Scholar 

  18. Avdeef A, Tsinman K, Tsinman O, Sun N, Voloboy D. Miniaturization of powder dissolution measurement and estimation of particle size. Chem Biodivers. 2009;6:1796–811.

    Article  CAS  PubMed  Google Scholar 

  19. Tseng Y-C, Patel M, Zhao Y. Determination of intrinsic dissolution rate using miniaturized rotating and stationary disk systems. Dissolution Technol. 2014;21:24–9.

    Article  CAS  Google Scholar 

  20. Klein S, Dressman JB, Butler J, Hempenstall JM, Reppas C. Media to simulate the postprandial stomach I. Matching the physicochemical characteristics of standard breakfasts. J Pharm Pharmacol. 2004;56:605–10.

    Article  CAS  PubMed  Google Scholar 

  21. Kong F, Singh RP. Disintegration of solid foods in human stomach. J Food Sci. 2008;73:67–80.

    Article  Google Scholar 

  22. Braun RJ, Parrott EL. Influence of viscosity and solubilization on dissolution rate. J Pharm Sci. 1972;61:175–8.

    Article  CAS  PubMed  Google Scholar 

  23. Marciani L, Gowland PA, Spiller RC, Manoj P, Moore RJ, Young P, et al. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol-Gastrointest Liver Physiol. 2017;280:G1227–33.

    Article  Google Scholar 

  24. Benini L, Castellani G, Brighenti F, Heaton KW, Brentegani MT, Casiraghi MC, et al. Gastric emptying of a solid meal is accelerated by the removal of dietary fibre naturally present in food. Gut. 1995;36:825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Macheras P, Koupparis M, Antimisiaris S. An in vitro model for exploring CR theophylline-milk fat interactions. Int J Pharm. 1989;54:123–30.

    Article  CAS  Google Scholar 

  26. Macheras P, Koupparis M, Apostolelli E. Dissolution of 4 controlled-release theophylline formulations in milk. Int J Pharm. 1987;36:73–9.

    Article  CAS  Google Scholar 

  27. Russell TL, Berardi RR, Barnett JL, Dermentzoglou LC, Jarvenpaa KM, Schmaltz SP, et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharm Res. 1993;10:187–96.

    Article  CAS  PubMed  Google Scholar 

  28. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7:756–61.

    Article  CAS  PubMed  Google Scholar 

  29. Nagasawa Y, Nakagawa Y, Kenmochi J. OKADA T. 1. Microscopic viscosity of aqueous solution of saccharides: a study by ultrafast pump-probe spectroscopy. Cryobiol Cryotechnol. 2003;49:87–95.

    Google Scholar 

  30. Hoshino S, Oike T, Yakura H. Diffusion coefficient and micro-viscosity in vicious low molecular solutions. Kagaku Kagaku. 36:433–8.

  31. Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids II: Effect of buffers. J Pharm Sci. 1981;70:22–32.

    Article  CAS  PubMed  Google Scholar 

  32. Ranz WE, Marshall WR. Evaporation from droplets. Chem Eng Prog. 1952;48:141–6.

    CAS  Google Scholar 

  33. Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. Int J Pharm. 1989;51:9–17.

    Article  CAS  Google Scholar 

  34. Sugano K. Theoretical comparison of hydrodynamic diffusion layer models used for dissolution simulation in drug discovery and development. Int J Pharm. 2008;363:73–7.

    Article  CAS  PubMed  Google Scholar 

  35. Nogami H, Fukuzawa H, Nakai Y. Studies on tablet disintegration. I. The effect of penetrating rate on tablet disintegration. Chem Pharm Bull (Tokyo). 1963;11:1389–98.

    Article  CAS  PubMed  Google Scholar 

  36. Cvijić S, Parojčić J, Langguth P. Viscosity-mediated negative food effect on oral absorption of poorly-permeable drugs with an absorption window in the proximal intestine: In vitro experimental simulation and computational verification. Eur J Pharm Sci. 2014;61:40–53.

    Article  PubMed  Google Scholar 

  37. Higuchi M, Yoshihashi Y, Tarada K, Sugano K. Minimum rotation speed to prevent coning phenomena in compendium paddle dissolution apparatus. Eur J Pharm Sci. 2014;65:74–8.

    Article  CAS  PubMed  Google Scholar 

  38. Higuchi M, Terada K, Sugano K. Coning phenomena under laminar flow. Eur J Pharm Sci. 2015;80.

  39. Suarez-Sharp S, Delvadia PR, Dorantes A, Duan J, Externbrink A, Gao Z, et al. Regulatory Perspectives on Strength-Dependent Dissolution Profiles and Biowaiver Approaches for Immediate Release (IR) Oral Tablets in New Drug Applications. AAPS J. 2016;18:578–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Higuchi WI. Diffusional models useful in biopharmaceutics: drug release rate processes. J Pharm Sci. 1967;56:315–24.

    Article  CAS  Google Scholar 

  41. Shekunov B, Montgomery ER. Theoretical analysis of drug dissolution: I. Solubility and intrinsic dissolution rate. J Pharm Sci. 2016;105:2685–97.

    Article  CAS  PubMed  Google Scholar 

  42. Dokoumetzidis A, Papadopoulou V, Valsami G, Macheras P. Development of a reaction-limited model of dissolution: Application to official dissolution tests experiments. Int J Pharm. 2008;355:114–25.

    Article  CAS  PubMed  Google Scholar 

  43. Macheras P, Iliadis A, Melagraki G. A reaction limited in vivo dissolution model for the study of drug absorption: Towards a new paradigm for the biopharmaceutic classification of drugs. Eur J Pharm Sci. 2018;117:98–106.

    Article  CAS  PubMed  Google Scholar 

  44. Macheras P, Argyrakis P. Gastrointestinal drug absorption: is it time to consider heterogeneity as well as homogeneity. Pharm Res. 1997;14:842–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyohiko Sugano.

Ethics declarations

Conflict of Interest

The Author(s) declare(s) that they have no coflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 282 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirose, R., Sugano, K. Effect of Food Viscosity on Drug Dissolution. Pharm Res 41, 105–112 (2024). https://doi.org/10.1007/s11095-023-03620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03620-y

Keywords

Navigation