Skip to main content
Log in

In vivo Pharmacokinetic/Pharmacodynamic Analysis of the Efficacy of the Cefepime/Nacubactam Combination Against β-Lactamase-Producing Enterobacterales based on the Instantaneous MIC Concept

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nacubactam (NAC) is a novel diazabicyclooctane β-lactamase inhibitor used in combination with cefepime (CFPM). In this study, we aimed to determine the target pharmacokinetics (PK) and pharmacodynamics (PD) values of CFPM/NAC in mice infected with β-lactamase-producing Enterobacterales, such as the carbapenemase-producing Enterobacterales.

Methods

Three strains of β-lactamase-producing Enterobacterales, Klebsiella pneumoniae MSC 21444, Escherichia coli MSC 20662, and K. pneumoniae ATCC BAA-1898, were used for checkerboard assays and fractionation studies and dose-range studies. A PK study was performed in neutropenic mice. Additionally, PK/PD analysis was performed based on the instantaneous minimum inhibitory concentration (MICi) concept.

Results

Checkerboard measurements revealed that higher NAC concentrations decreased the CFPM MIC in a concentration-dependent manner. In all tested strains, fT > MICi calculated from the PK experiments showed a high correlation with the mean change in the bacterial count of thigh-infected mice in the in vivo PD study, suggesting that fT > MICi is an optimal PK/PD parameter for monitoring the CFPM/NAC combination. The target fT > MICi values for CFPM/NAC to achieve a bacteriostatic effect, 1-log10-kill, and 2-log10-kill values were 30, 49, and 94%, respectively.

Conclusions

Our results indicate that fT > MICi is a PK/PD parameter is suitable for monitoring the CFPM/NAC combination. The minimum target value for achieving a static effect against β-lactamase-producing Enterobacterales is 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Tehrani KHME, Martin NI. β-lactam/β-lactamase inhibitor combinations: An update. Med Chem Commun. 2018;9:1439–56.

    Article  CAS  Google Scholar 

  2. Center for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. www.cdc.gov/DrugResistance/Biggest-Threats.html. Retrieved 26 February 2022.

  3. Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021;3:1–21.

    Google Scholar 

  4. Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289:321–31.

    Article  CAS  PubMed  Google Scholar 

  5. Morinaka A, Tsutsumi Y, Yamada K, Takayama Y, Sakakibara S, Takata T, Abe T. In vitro and in vivo activities of OP0595, a new diazabicyclooctane, against CTX-M-15-positive Escherichia coli and KPC-positive Klebsiella pneumoniae. Antimicrob Agents Chemother. 2016;60:3001–6.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL. Pharmacokinetics-Pharmacodynamics of Antimicrobial Therapy: It’s Not Just for Mice Anymore. Clin Infect Dis. 2006;44:79–86.

    Article  PubMed  Google Scholar 

  7. Zhao M, Lepak AJ, Andes DR. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem. 2016;24:6390–400.

    Article  CAS  PubMed  Google Scholar 

  8. Scaglione F. Can PK/PD be used in everyday clinical practice. Int J Antimicrob Agents. 2002;19:349–53.

    Article  CAS  PubMed  Google Scholar 

  9. Craig WA. Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–12.

    Article  CAS  PubMed  Google Scholar 

  10. Alshaer MH, Lesnicki E, Panchal V, Bruzzone M, Argyle V. Clinical Pharmacokinetics and Pharmacodynamics of Cefepime. Clin Pharmacokinet. 2022;61:929–53.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Takemura W, Tashiro S, Hayashi M, Igarashi Y, Liu X, Mizukami Y, Kojima N, Morita T, Enoki Y, Taguchi K, Yokoyama Y, Nakamura T, Matsumoto K. Cefmetazole as an Alternative to Carbapenems Against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Infections Based on In Vitro and In Vivo Pharmacokinetics/Pharmacodynamics Experiments. Pharm Res. 2021;38:1839–46.

    Article  CAS  PubMed  Google Scholar 

  12. Igarashi Y, Takemura W, Liu X, Kojima N, Morita T, Tuan V, Chuang G, Enoki Y, Taguchi K, Matsumoto K. Development of an optimized and practical pharmacokinetics/pharmacodynamics analysis method for aztreonam/nacubactam against carbapenemase-producing K. pneumoniae. J Antimicrob Chemother 2023;78:991–99.

  13. Bhagunde P, Chang K-T, Hirsch EB, Ledesma KR, Nikolaou M, Tam VH. Novel modeling framework to guide design of optimal dosing strategies for β-lactamase inhibitors. Antimicrob Agents Chemother. 2012;56:2237–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Abodakpi H, Chang K-T, Gao S, Sánchez-Díaz AM, Cantón R, Tam VH. Optimal piperacillin-tazobactam dosing strategies against extended-spectrum-β-lactamase-producing enterobacteriaceae. Antimicrob Agents Chemother. 2019;63:e01906-e1918.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Abodakpi H, Chang KT, Zhou J, Byerly C, Tam VH. A novel framework to compare the effectiveness of β-lactamase inhibitors against extended-spectrum β-lactamase-producing enterobacteriaceae. Clin Microbiol Infect. 2019;25:1154.e9-14.

    Article  CAS  PubMed  Google Scholar 

  16. Tam VH, Abodakpi H, Wang W, Ledesma KR, Merlau PR, Chan K, Altman R, Tran TT, Nikolaou M, Sofjan AK. Optimizing pharmacokinetics/pharmacodynamics of β-lactam/β-lactamase inhibitor combinations against high inocula of ESBL-producing bacteria. J Antimicrob Chemother. 2021;76:179–83.

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Racine F, Wismer MK, Young K, Carr DM, Xiao JC, Katwaru R, Si Q, Harradine P, Motyl M, Bhagunde PR, Rizk ML. Exploring the pharmacokinetic/pharmacodynamic relationship of relebactam (MK-7655) in combination with imipenem in a Hollow-Fiber Infection Model. Antimicrob Agents Chemother. 2018;62:e02323-e2417.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically—eleventh: M07. Wayne: CLSI; 2018.

  19. CLSI. Performance standards for antimicrobial susceptibility testing—thirty-second: M100. 2022; https://clsi.org/standards/products/free-resources/access-our-free-resources/. Retrieved 26 February 2022.

  20. CLSI. Methods for determining bactericidal activity of antimicrobial agents; approved guideline, M26-A. Wayne: CLSI; 1999.

  21. White RL, Burgess DS, Manduru M, Bosso JA. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob Agents Chemother. 1996;40:1914–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Liu X, Tashiro S, Igarashi Y, Takemura W, Kojima N, Morita T, Hayashi M, Enoki Y, Taguchi K, Matsumoto K. Differences in Pharmacokinetic/Pharmacodynamic Parameters of Tedizolid Against VRE and MRSA. Pharm Res. 2022;40:187–96.

    Article  PubMed  Google Scholar 

  23. Mallalieu NL, Winter E, Fettner S, Patel K, Zwanziger E, Attley G, Rodriguez I, Kano A, Salama SM, Bentley D, Geretti AM. Safety and pharmacokinetic characterization of nacubactam, a novel β-lactamase inhibitor, alone and in combination with meropenem, in healthy volunteers. Antimicrob Agents Chemother. 2020;64:e02229-e2319.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nye KJ, Shi YG, Andrews JM, Wise R. Pharmacokinetics and tissue penetration of cefepime. J Antimicrob Chemother. 1989;24:23–8.

    Article  CAS  PubMed  Google Scholar 

  25. Morinaka A, Tsutsumi Y, Yamada M, Suzuki K, Watanabe T, Abe T, Furuuchi T, Inamura S, Sakamaki Y, Mitsuhashi N, Ida T, Livermore DM. OP0595, a new diazabicyclooctane: Mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam “enhancer.” J Antimicrob Chemother. 2015;70:2779–86.

    Article  CAS  PubMed  Google Scholar 

  26. Olofsson SK, Cars O. Optimizing drug exposure to minimize selection of antibiotic resistance. Clin Infect Dis. 2007;45:129–36.

    Article  Google Scholar 

  27. Barbhaiya RH, Forgue ST, Gleason CR, Knupp CA, Pittman KA, Weidler DJ, Movahhed H, Tenney J, Martin RR. Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob Agents Chemother. 1992;36:552–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Meiji Seika Pharma Co., Ltd., Japan, for supplying nacubactam hydrate and clinical isolates used in this study. We would like to thank Editage (www.editage.com) for English language editing.

Funding

This study was supported by the Japan Agency for Medical Research and Development (grant number: JP18pc0101028) and the Keio University Doctorate Student Grant-in-Aid Program of the Ushioda Memorial Fund and Meiji Seika Pharma Co., Ltd., Japan.

Author information

Authors and Affiliations

Authors

Contributions

Yuki Igarashi contributed to the conception and design of the study. In vitro PD experiments were performed by Yuki Igarashi. In vivo PD experiments were performed by Yuki Igarashi, Wataru Takemura, Xiaoxi Liu, Nana Kojima, and Takumi Morita. Yuki Igarashi, Yuki Enoki, Kazuaki Taguchi, and Kazuaki Matsumoto performed analysis and interpretation of data. Yuki Igarashi wrote the first draft of the manuscript. Victor Tuan Giam Chuang, Kazuaki Taguchi, and Kazuaki Matsumoto edited the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Kazuaki Taguchi.

Ethics declarations

Conflict of Interest

K. Matsumoto received grant support from Meiji Seika Pharma Co., Ltd. and Sumitomo Pharma Co., Ltd. as well as speaker honoraria from Meiji Seika Pharma Co., Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 197 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igarashi, Y., Takemura, W., Liu, X. et al. In vivo Pharmacokinetic/Pharmacodynamic Analysis of the Efficacy of the Cefepime/Nacubactam Combination Against β-Lactamase-Producing Enterobacterales based on the Instantaneous MIC Concept. Pharm Res 40, 2423–2431 (2023). https://doi.org/10.1007/s11095-023-03608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03608-8

Keywords

Navigation