Skip to main content

Advertisement

Log in

Modeling Gasotransmitter Availability to Brain Capillary Endothelial Cells with Ultrasound-sensitive Microbubbles

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Background

Vascular cognitive impairment and dementia results from blood components passing through disrupted blood brain barriers (BBBs). Current treatments can reduce further progress of neuronal damage but do not treat the primary cause. Instead, these treatments typically aim to temporarily disrupt the BBB. Alternatively, this study computationally assessed the feasibility of delivering carbon monoxide (CO) from ultrasound-sensitive microbubbles (MBs) as a strategy to promote BBB repair and integrity. CO can interact with heme-containing compounds within cells and promote cell growth. However, careful dose control is critical for safety and efficacy because CO also binds at high affinity to hemoglobin (Hb).

Methods

Ultrasound activation was simulated at the internal carotid artery, and CO released from the resulting MB rupture was tracked along the shortest path to the BBB for several activation times and doses. The CO dose available to brain capillary endothelial cells (BCECs) was predicted by considering hemodynamics, mass transport, and binding kinetics.

Results

The half-life of CO binding to Hb indicated that CO is available to interact with BCECs for several cardiac cycles. Further, MB and COHb concentrations would not be near toxic levels and free Hb would be available. The axisymmetric model indicated that biologically-relevant CO concentrations will be available to BCECs, and these levels can be sustained with controlled ultrasound activation. A patient-specific geometry shows that while vessel tortuosity provides a heterogeneous response, a relevant CO concentration could still be achieved.

Conclusions

This computational study demonstrates feasibility of the CO / MB strategy, and that controlled delivery is important for viability of this strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data will be shared upon request to the authors.

References

  1. Shin JH. Dementia epidemiology fact sheet 2022. Ann Rehabil Med. 2022;46(2):53–9.

    PubMed  PubMed Central  Google Scholar 

  2. Hussain B, Fang C, Chang J. Blood-brain barrier breakdown: an emerging biomarker of cognitive impairment in normal aging and dementia. Front Neurosci. 2021;15: 688090.

    PubMed  PubMed Central  Google Scholar 

  3. Simonsheng S. Internal carotid artery C1 to C7 and M1 to M2. 2020, April 29. https://www.embodi3d.com/profile/27667-simonsheng/.

  4. Sun MK. Potential therapeutics for vascular cognitive impairment and dementia. Curr Neuropharmacol. 2018;16(7):1036–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9(1):23.

    PubMed  PubMed Central  Google Scholar 

  6. Tung YS, Vlachos F, Feshitan JA, Borden MA, Konofagou EE. The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. J Acoust Soc Am. 2011;130(5):3059–67.

    PubMed  PubMed Central  Google Scholar 

  7. Nicodemus NE, Becerra S, Kuhn TP, Packham HR, Duncan J, Mahdavi K, et al. Focused transcranial ultrasound for treatment of neurodegenerative dementia. Alzheimer’s Dement. 2019;5(1):374–81.

    Google Scholar 

  8. Rosenberg GA. Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(7):1139–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of natural polyphenols on oxidative stress-mediated blood-brain barrier dysfunction. Antioxidants (Basel). 2022;11(2).

  10. Hanafy KA, Oh J, Otterbein LE. Carbon Monoxide and the brain: time to rethink the dogma. Curr Pharm Des. 2013;19(15):2771–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakao A, Choi AMK, Murase N. Protective effect of carbon monoxide in transplantation. J Cell Mol Med. 2006;10(3):650–71.

    CAS  PubMed  Google Scholar 

  12. Washington KS, Bashur CA. Delivery of antioxidant and anti-inflammatory agents for tissue engineered vascular grafts. Front Pharmacol. 2017;21:8.

    Google Scholar 

  13. Bathoorn E, Slebos DJ, Postma DS, Koeter GH, van Oosterhout AJM, van der Toorn M, et al. Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J. 2007;30(6):1131–7.

    CAS  PubMed  Google Scholar 

  14. Lee GY, Zeb A, Kim EH, Suh B, Shin YJ, Kim D, et al. CORM-2-entrapped ultradeformable liposomes ameliorate acute skin inflammation in an ear edema model via effective CO delivery. Acta Pharm Sin B. 2020;10(12):2362–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thom SR, Fisher D, Xu YA, Notarfrancesco K, Ischiropoulos H. Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide. Proc Natl Acad Sci. 2000;97(3):1305–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9(9):728–43.

    CAS  PubMed  Google Scholar 

  17. Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, et al. CO-releasing materials: an emphasis on therapeutic implications, as release and subsequent cytotoxicity are the part of therapy. Materials. 2019;12(10):1643.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Navarro-Becerra JA, Song KH, Martinez P, Borden MA. Microbubble size and dose effects on pharmacokinetics. ACS Biomater Sci Eng. 2022;8(4):1686–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ryter SW, Choi AMK. Carbon monoxide in exhaled breath testing and therapeutics. J Breath Res. 2013;7(1): 017111.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Otterbein LE, Bach FH, Alam J, Soares M, Tao LuH, Wysk M, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6(4):422–8.

    CAS  PubMed  Google Scholar 

  21. Izadifar Z, Izadifar Z, Chapman D, Babyn P. An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications. J Clin Med. 2020;9(2).

  22. Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA, et al. Alzheimer’s Disease Cooperative Study. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol. 2012;69(7):836–41.

  23. Fukui K, Kakiuchi Y. The kinetics of the reaction of CO+O2Hb=O2+COHb in human-hemoglobin in solution at a low PCO range. Jpn J Physiol. 1970;20(3):332–47.

    CAS  PubMed  Google Scholar 

  24. Lee G, Choi S, Kim K, Yun J, Son JS, Jeong S, et al. Association of hemoglobin concentration and its change with cardiovascular and all‐cause mortality. J Am Heart Assoc. 2018;7(3).

  25. Vyas HS, Jadeja RN, Vohra A, Upadhyay KK, Thounaojam MC, Bartoli M, et al. CORM-A1 Alleviates Pro-Atherogenic Manifestations via miR-34a-5p Downregulation and an Improved Mitochondrial Function. Antioxidants. 2023;12(5):997.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng P, Wang C, Shi Z, Johns VK, Ma L, Oyer J, et al. Visible-light activatable organic CO-releasing molecules (PhotoCORMs) that simultaneously generate fluorophores. Org Biomol Chem. 2013;11(39):6671–4.

    CAS  PubMed  Google Scholar 

  27. Bernardini C, Zannoni A, Bacci ML, Forni M. Protective effect of carbon monoxide pre-conditioning on LPS-induced endothelial cell stress. Cell Stress Chaperones. 2010;15(2):219–24.

    CAS  PubMed  Google Scholar 

  28. Li Y, Wang H, Yang B, Yang J, Ruan X, Yang Y, et al. Influence of carbon monoxide on growth and apoptosis of human umbilical artery smooth muscle cells and vein endothelial cells. Int J Biol Sci. 2012;8(10):1431–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li DS, Schneewind S, Bruce M, Khaing Z, O’Donnell M, Pozzo L. Spontaneous nucleation of stable perfluorocarbon emulsions for ultrasound contrast agents. Nano Lett. 2019;19(1):173–81.

    CAS  PubMed  Google Scholar 

  30. Deschamps J, Menz DH, Padua AAH, Costa Gomes MF. Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids. J Chem Thermodyn. 2007;39(6):847–54.

    CAS  Google Scholar 

  31. Loskutova K, Nimander D, Gouwy I, Chen H, Ghorbani M, Svagan AJ, et al. A study on the acoustic response of pickering perfluoropentane droplets in different media. ACS Omega. 2021;6(8):5670–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Karthikesh MS, Yang X. The effect of ultrasound cavitation on endothelial cells. Exp Biol Med. 2021;246(7):758–70.

    CAS  Google Scholar 

  33. Valvita R, Sadi B. Variations of shape, length, branching, and end trunks of M1 segment of middle cerebral artery. J Neurol Neurol Sci Disord. 2019;5(1):052–6.

    Google Scholar 

  34. Vitello DJ, Ripper RM, Fettiplace MR, Weinberg GL, Vitello JM. Blood density is nearly equal to water density: a validation study of the gravimetric method of measuring intraoperative blood loss. J Vet Med. 2015;29(2015):1–4.

    Google Scholar 

  35. Uematsu S, Yang A, Preziosi TJ, Kouba R, Toung TJ. Measurement of carotid blood flow in man and its clinical application. Stroke. 1983;14(2):256–66.

    CAS  PubMed  Google Scholar 

  36. Kozlova E, Chernysh A, Kozlov A, Sergunova V, Sherstyukova E. Assessment of carboxyhemoglobin content in the blood with high accuracy: wavelength range optimization for nonlinear curve fitting of optical spectra. Heliyon. 2020;6(8): e04622.

    PubMed  PubMed Central  Google Scholar 

  37. Stupfel M, Bouley G. Physiological and biochemical effects on rats and mice exposed to small concentrations of carbon monoxide for long periods. Ann N Y Acad Sci. 1970;174(1 Biological Ef):342–68.

    CAS  PubMed  Google Scholar 

  38. Michael E, Abeyrathna N, Patel AV, Liao Y, Bashur CA. Incorporation of photo-carbon monoxide releasing materials into electrospun scaffolds for vascular tissue engineering. Biomed Mater. 2016;11(2): 025009.

    PubMed  Google Scholar 

  39. Stevenson TH, Gutierrez AF, Alderton WK, Lian L, Scrutton NS. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands. Biochem J. 2001;358(1):201.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wegiel B, Gallo DJ, Raman KG, Karlsson JM, Ozanich B, Chin BY, et al. Nitric oxide-dependent bone marrow progenitor mobilization by carbon monoxide enhances endothelial repair after vascular injury. Circulation. 2010;121(4):537–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dauba A, Delalande A, Kamimura HAS, Conti A, Larrat B, Tsapis N, et al. Recent advances on ultrasound contrast agents for blood-brain barrier opening with focused ultrasound. Pharmaceutics. 2020;12(11):1125.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lapin NA, Gill K, Shah BR, Chopra R. Consistent opening of the blood brain barrier using focused ultrasound with constant intravenous infusion of microbubble agent. Sci Rep. 2020;10(1):16546.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou Y, Wang Z, Chen Y, Shen H, Luo Z, Li A, et al. Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater. 2013;25(30):4123–30.

    CAS  PubMed  Google Scholar 

  44. Lee PJH, Matkar PN, Kuliszewski MA, Leong-Poi H. Ultrasound-targeted cardiovascular gene therapy. In: Cardiac regeneration and repair. Elsevier; 2014. p. 380–407.

  45. Zhang W, Nan SL, Bai WK, Hu B. Low-frequency ultrasound combined with microbubbles improves gene transfection in prostate cancer cells in vitro and in vivo. Asia Pac J Clin Oncol. 2022 Feb;18(1):93–8.

    PubMed  Google Scholar 

  46. Wang L, Zheng S. Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy. J Zhejiang Univ-SCIENCE B. 2019;20(4):291–9.

    Google Scholar 

  47. Yang Sun, Kruse DE, Dayton PA, Ferrara KW. High-frequency dynamics of ultrasound contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(11):1981–91.

  48. Wu J, Li Y, Yang P, Huang Y, Lu S, Xu F. Novel Role of Carbon Monoxide in Improving Neurological Outcome After Cardiac Arrest in Aged Rats: Involvement of Inducing Mitochondrial Autophagy. J Am Heart Assoc. 2019;8(9).

  49. Goebel U, Wollborn J. Carbon monoxide in intensive care medicine—time to start the therapeutic application?! Intensive Care Med Exp. 2020;8(1):2.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Tanya Enderli for her helping in researching physiological parameters.

Funding

This work was funded by a Brevard Foundation Medical Research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris A. Bashur.

Ethics declarations

Conflict of Interest

The authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jourdain, R., Chivukula, V.K. & Bashur, C.A. Modeling Gasotransmitter Availability to Brain Capillary Endothelial Cells with Ultrasound-sensitive Microbubbles. Pharm Res 40, 2399–2411 (2023). https://doi.org/10.1007/s11095-023-03606-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03606-w

Keywords

Navigation