Skip to main content

Advertisement

Log in

Physiologically Based Pharmacokinetic Modeling for Prediction of 5-FU Pharmacokinetics in Cancer Patients with Hepatic Impairment After 5-FU and Capecitabine Administration

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

5-fluorouracil (5-FU) and its prodrug capecitabine are commonly prescribed anti-tumor medications. We aimed to establish physiologically based pharmacokinetic (PBPK) models of capecitabine-metabolites and 5-FU-metabolites to describe their pharmacokinetics in tumor and plasma of cancer patients with liver impairment.

Methods

Models including the cancer compartment were developed in PK-Sim® and MoBi® and evaluated by R programming language with 25 oral capecitabine and 18 intravenous 5-FU studies for cancer patients with and without liver impairment.

Results

The PBPK models were constructed successfully as most simulated Cmax and AUClast were within two-fold error of observed values. The simulated alterations of tumor 5-FU Cmax and AUClast in cancer patients with severe liver injury compared with normal liver function were 1.956 and 3.676 after oral administration of capecitabine, but no significant alteration was observed after intravenous injection of 5-FU. Besides, 5-FU concentration in tumor tissue increases with higher tumor blood flow but not tumor size. Sensitivity analysis revealed that dihydropyrimidine dehydrogenase (DPD) and other metabolic enzymes′ activity, capecitabine intestinal permeability and plasma protein scale factor played a vital role in tumor and plasma 5-FU pharmacokinetics.

Conclusions

PBPK model prediction suggests no dosage adaption of capecitabine or 5-FU is required for cancer patients with hepatic impairment but it would be reduced when the toxic reaction is observed. Furthermore, tumor blood flow rate rather than tumor size is critical for 5-FU concentration in tumor. In summary, these models could predict pharmacokinetics of 5-FU in tumor in cancer patients with varying characteristics in different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data available on request from the authors, Yu Wang (Email:21919028@zju.edu.cn) or Su Zeng (Email:zengsu@zju.edu.cn).

Abbreviations

5′-DFCR:

5′-deoxy-5-fluorocytidine

5′-DFUR:

5′-deoxy-5-fluorouridine

5-FU:

5-fluorouracil

FUH2 :

Fluorodihydrouracil

FUPA:

α-fluoro-β-ureidopropionic acid

FBAL:

α-fluoro-β-alanine

CES:

Carboxylesterase

CDA:

Cytidine deaminase

TP:

Thymidine phosphorylase

DPD:

Dihydropyrimidine dehydrogenase

DHP:

Dihydropyrimidase

BUP:

β-ureidopropionase

OPRT:

Orotate phosphoribosyltransferase

CP-B:

Child-Pugh B

CP-C:

Child-Pugh C

GOF:

Goodness-of-fit

GMFE:

Geometric mean fold-error

AUClast :

Area under the plasma concentration–time curve from time zero to the time of the last quantifiable concentration

References

  1. Reigner B, Blesch K, Weidekamm E. Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet. 2001;40(2):85–104.

    Article  CAS  PubMed  Google Scholar 

  2. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34(8):1274–81.

    Article  CAS  PubMed  Google Scholar 

  3. Thorn CF, Marsh S, Carrillo MW, McLeod HL, Klein TE, Altman RB. PharmGKB summary: fluoropyrimidine pathways. Pharmacogenet Genomics. 2011;21(4):237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Derissen EJ, Jacobs BA, Huitema AD, Rosing H, Schellens JH, Beijnen JH. Exploring the intracellular pharmacokinetics of the 5-fluorouracil nucleotides during capecitabine treatment. Br J Clin Pharmacol. 2016;81(5):949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989;16(4):215–37.

    Article  CAS  PubMed  Google Scholar 

  6. Diasio RB. Clinical implications of dihydropyrimidine dehydrogenase on 5-FU pharmacology. Oncology (Williston Park). 2001;15(1 Suppl 2):21–6 (discussion 7).

    CAS  PubMed  Google Scholar 

  7. Jacobs BAW, Deenen MJ, Joerger M, Rosing H, de Vries N, Meulendijks D, et al. Pharmacokinetics of capecitabine and four metabolites in a heterogeneous population of cancer patients: a comprehensive analysis. CPT Pharmacometrics Syst Pharmacol. 2019;8(12):940–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shafiei M, Yoon R, McLachlan A, Boddy A, Beale P, Blinman P. Pharmacokinetics of anticancer drugs used in treatment of older adults with colorectal cancer: a systematic review. Ther Drug Monit. 2019;41(5):553–60.

    Article  CAS  PubMed  Google Scholar 

  9. d’Esposito F, Nebot N, Edwards RJ, Murray M. Impaired irinotecan biotransformation in hepatic microsomal fractions from patients with chronic liver disease. Br J Clin Pharmacol. 2010;70(3):400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Twelves C, Glynne-Jones R, Cassidy J, Schüller J, Goggin T, Roos B, et al. Effect of hepatic dysfunction due to liver metastases on the pharmacokinetics of capecitabine and its metabolites. Clin Cancer Res. 1999;5(7):1696–702.

    CAS  PubMed  Google Scholar 

  11. Kobuchi S, Ito Y. Application of pharmacometrics of 5-fluorouracil to personalized medicine: a tool for predicting pharmacokinetic-pharmacodynamic/toxicodynamic responses. Anticancer Res. 2020;40(12):6585–97.

    Article  CAS  PubMed  Google Scholar 

  12. Saez-Bello M, Mangas-Sanjuan V, Martinez-Gomez MA, Lopez-Montenegro Soria MA, Climente-Marti M, Merino-Sanjuan M. Evaluation of ABC gene polymorphisms on the pharmacokinetics and pharmacodynamics of capecitabine in colorectal patients: implications for dosing recommendations. Br J Clin Pharmacol. 2021;87(3):905–15.

    Article  CAS  PubMed  Google Scholar 

  13. Arshad U, Ploylearmsaeng SA, Karlsson MO, Doroshyenko O, Langer D, Schomig E, et al. Prediction of exposure-driven myelotoxicity of continuous infusion 5-fluorouracil by a semi-physiological pharmacokinetic-pharmacodynamic model in gastrointestinal cancer patients. Cancer Chemother Pharmacol. 2020;85(4):711–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakai S, Kobuchi S, Ito Y, Sakaeda T. A physiologically based pharmacokinetic-pharmacodynamic model for capecitabine in colorectal cancer rats: simulation of antitumor efficacy at various administration schedules. Eur J Drug Metab Pharmacokinet. 2021;46(2):301–15.

    Article  CAS  PubMed  Google Scholar 

  15. Tsukamoto Y, Kato Y, Ura M, Horii I, Ishitsuka H, Kusuhara H, et al. A physiologically based pharmacokinetic analysis of capecitabine, a triple prodrug of 5-FU, in humans: the mechanism for tumor-selective accumulation of 5-FU. Pharm Res. 2001;18(8):1190–202.

    Article  CAS  PubMed  Google Scholar 

  16. Tsukamoto Y, Kato Y, Ura M, Horii I, Ishikawa T, Ishitsuka H, et al. Investigation of 5-FU disposition after oral administration of capecitabine, a triple-prodrug of 5-FU, using a physiologically based pharmacokinetic model in a human cancer xenograft model: comparison of the simulated 5-FU exposures in the tumour tissue between human and xenograft model. Biopharm Drug Dispos. 2001;22(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  17. Sakai S, Kobuchi S, Ito Y, Sakaeda T. Assessment of pharmacokinetic variations of capecitabine after multiple administration in rats: a physiologically based pharmacokinetic model. Cancer Chemother Pharmacol. 2020;85(5):869–80.

    Article  CAS  PubMed  Google Scholar 

  18. Sakai S, Kobuchi S, Ito Y, Sakaeda T. Assessment of drug-drug interaction and optimization in capecitabine and irinotecan combination regimen using a physiologically based pharmacokinetic model. J Pharm Sci. 2022;111(5):1522–30.

    Article  CAS  PubMed  Google Scholar 

  19. Wojtyniak JG, Britz H, Selzer D, Schwab M, Lehr T. Data digitizing: accurate and precise data extraction for quantitative systems pharmacology and physiologically-based pharmacokinetic modeling. CPT Pharmacometrics Syst Pharmacol. 2020;9(6):322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morsman JM, Sludden J, Ameyaw MM, Githang AJ, Indalo A, Ofori-Adjei D, et al. Evaluation of dihydropyrimidine dehydrogenase activity in South-west Asian, Kenyan and Ghanaian populations. Br J Clin Pharmacol. 2000;50(3):269–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heggie GD, Sommadossi JP, Cross DS, Huster WJ, Diasio RB. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res. 1987;47(8):2203–6.

    CAS  PubMed  Google Scholar 

  22. Edginton AN, Willmann S. Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet. 2008;47(11):743–52.

    Article  PubMed  Google Scholar 

  23. Prasad B, Bhatt DK, Johnson K, Chapa R, Chu X, Salphati L, et al. Abundance of phase 1 and 2 drug-metabolizing enzymes in alcoholic and hepatitis C cirrhotic livers: a quantitative targeted proteomics study. Drug Metab Dispos. 2018;46(7):943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giorgio V, Miele L, Principessa L, Ferretti F, Villa MP, Negro V, et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46(6):556–60.

    Article  PubMed  Google Scholar 

  25. Almersjo OE, Gustavsson BG, Regardh CG, Wahlen P. Pharmacokinetic studies of 5-fluorouracil after oral and intravenous administration in man. Acta Pharmacol Toxicol (Copenh). 1980;46(5):329–36.

    Article  CAS  PubMed  Google Scholar 

  26. Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, et al. A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol. 2011;2:4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Judson IR, Beale PJ, Trigo JM, Aherne W, Crompton T, Jones D, et al. A human capecitabine excretion balance and pharmacokinetic study after administration of a single oral dose of 14C-labelled drug. Invest New Drugs. 1999;17(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  28. Palmirotta R, Lovero D, Delacour H, Le Roy A, Cremades S, Silvestris F. Rare dihydropyrimidine dehydrogenase variants and toxicity by floropyrimidines: a case report. Front Oncol. 2019;9:139.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Joel SP, Papamichael D, Richards F, Davis T, Aslanis V, Chatelut E, et al. Lack of pharmacokinetic interaction between 5-fluorouracil and oxaliplatin. Clin Pharmacol Ther. 2004;76(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  30. Faugeras L, Dili A, Druez A, Krug B, Decoster C, D’Hondt L. Treatment options for metastatic colorectal cancer in patients with liver dysfunction due to malignancy. Crit Rev Oncol Hematol. 2017;115:59–66.

    Article  CAS  PubMed  Google Scholar 

  31. Fan Y, Mansoor N, Ahmad T, Khan RA, Czejka M, Sharib S, et al. Physiologically based pharmacokinetic modeling for predicting irinotecan exposure in human body. Oncotarget. 2017;8(29):48178–85.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Blesch KS, Gieschke R, Tsukamoto Y, Reigner BG, Burger HU, Steimer JL. Clinical pharmacokinetic/pharmacodynamic and physiologically based pharmacokinetic modeling in new drug development: the capecitabine experience. Invest New Drugs. 2003;21(2):195–223.

    Article  CAS  PubMed  Google Scholar 

  33. Cariello R, Federico A, Sapone A, Tuccillo C, Scialdone VR, Tiso A, et al. Intestinal permeability in patients with chronic liver diseases: Its relationship with the aetiology and the entity of liver damage. Dig Liver Dis. 2010;42(3):200–4.

    Article  PubMed  Google Scholar 

  34. Gerner B, Scherf-Clavel O. Physiologically based pharmacokinetic modelling of cabozantinib to simulate enterohepatic recirculation, drug-drug interaction with rifampin and liver impairment. Pharmaceutics. 2021;13(6):778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ponziani FR, Valenza V, Nure E, Bianco G, Marrone G, Grieco A, et al. Effect of liver transplantation on intestinal permeability and correlation with infection episodes. PLoS ONE. 2020;15(6):e0235359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morel A, Boisdron-Celle M, Fey L, Soulie P, Craipeau MC, Traore S, et al. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther. 2006;5(11):2895–904.

    Article  CAS  PubMed  Google Scholar 

  37. Hishinuma E, Narita Y, Obuchi K, Ueda A, Saito S, Tadaka S, et al. Importance of rare DPYD genetic polymorphisms for 5-fluorouracil therapy in the japanese population. Front Pharmacol. 2022;13:930470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saif MW, Ezzeldin H, Vance K, Sellers S, Diasio RB. DPYD*2A mutation: the most common mutation associated with DPD deficiency. Cancer Chemother Pharmacol. 2007;60(4):503–7.

    Article  CAS  PubMed  Google Scholar 

  39. van Kuilenburg AB. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer. 2004;40(7):939–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [grant numbers 81973394].

Author information

Authors and Affiliations

Authors

Contributions

Yu Wang collected data, conducted analysis, develop the model and wrote the manuscript; Haihong Hu collected data and conducted analysis; Su Zeng and Lushan Yu critically revised the manuscript; Su Zeng also contributed to conception design.

Corresponding author

Correspondence to Su Zeng.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hu, H., Yu, L. et al. Physiologically Based Pharmacokinetic Modeling for Prediction of 5-FU Pharmacokinetics in Cancer Patients with Hepatic Impairment After 5-FU and Capecitabine Administration. Pharm Res 40, 2177–2194 (2023). https://doi.org/10.1007/s11095-023-03585-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03585-y

Keywords

Navigation