Skip to main content
Log in

Genome-Wide Association Study for the Genetic Determinants of Thiopurine Methyltransferase Protein Expression in Human Livers and Racial Differences

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Introduction

Polymorphisms in the Thiopurine S-Methyltransferase (TPMT) gene are associated with decreased TPMT activity, but little is known about their impact on TPMT protein expression in the liver. This project is to conduct a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with altered TPMT protein expression in human livers and to determine if demographics affect hepatic TPMT protein expression.

Methods

Human liver samples (n = 287) were genotyped using a whole genome genotyping panel and quantified for TPMT protein expression using a Data-Independent Acquisition proteomics approach.

Results and Discussion

Thirty-one SNPs were found to be associated with differential expression of TPMT protein in the human livers. Subsequent analysis, conditioning on rs1142345, a SNP associated with the TPMT*3A and TPMT*3C alleles, showed no additional independent signals. Mean TPMT expression is significantly higher in wildtype donors compared to those carrying the known TPMT alleles, including TPMT*3A, TPMT*3C, and TPMT*24 (0.107 ± 0.028 vs. 0.052 ± 0.014 pmol/mg total protein, P = 2.2 × 10−16). After removing samples carrying the known TPMT variants, European ancestry donors exhibited significantly higher expression than African ancestry donors (0.109 ± 0.026 vs. 0.090 ± 0.041 pmol/mg total protein, P = 0.020).

Conclusion

The GWAS identified 31 SNPs associated with TPMT protein expression in human livers. Hepatic TPMT protein expression was significantly lower in subjects carrying the TPMT*3A, TPMT*3C, and TPMT*24 alleles compared to non-carriers. European ancestry was associated with significantly higher hepatic TPMT protein expression than African ancestry, independent of known TPMT variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Appell ML, Berg J, Duley J, Evans WE, Kennedy MA, Lennard L, Marinaki T, McLeod HL, Relling MV, Schaeffeler E, Schwab M, Weinshilboum R, Yeoh AEJ, McDonagh EM, Hebert JM, Klein TE, Coulthard SA. Nomenclature for alleles of the thiopurine methyltransferase gene. Pharmacogenet Genomics. 2013;23(4):242–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dervieux T, Meyer G, Barham R, Matsutani M, Barry M, Boulieu R, Neri B, Seidman E. Liquid chromatography-tandem mass spectrometry analysis of erythrocyte thiopurine nucleotides and effect of thiopurine methyltransferase gene variants on these metabolites in patients receiving azathioprine/6-mercaptopurine therapy. Clin Chem. 2005;51(11):2074–84.

    Article  CAS  PubMed  Google Scholar 

  3. Chrzanowska M, Kuehn M, Januszkiewicz-Lewandowska D, Kurzawski M, Droździk M. Thiopurine S-methyltransferase phenotype-genotype correlation in children with acute lymphoblastic leukemia. Acta Pol Pharm. 2012;69(3):405–10.

    CAS  PubMed  Google Scholar 

  4. Lennard L. Implementation of TPMT testing. Br J Clin Pharmacol. 2014;77(4):704–14.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weitzel KW, Smith DM, Elsey AR, Duong BQ, Burkley B, Clare-Salzler M, Gong Y, Higgins TA, Kong B, Langaee T, McDonough CW, Staley BJ, Vo TT, Wake DT, Cavallari LH, Johnson JA. Implementation of standardized clinical processes for TPMT testing in a diverse multidisciplinary population: challenges and lessons learned. Clin Transl Sci. 2018;11(2):175–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, Stein CM, Moyer AM, Evans WE, Klein TE, Antillon-Klussmann FG, Caudle KE, Kato M, Yeoh AEJ, Schmiegelow K, Yang JJ. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin Pharmacol Ther. 2019;2019 105(5):1095–105.

    Article  PubMed  Google Scholar 

  7. Stocco G, Cheok M, Crews K, Dervieux T, French D, Pei D, Yang W, Cheng C, Pui CH, Relling M, Evans W. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of Mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clinical Clin Pharmacol Ther. 2009;85(2):164–72.

    Article  CAS  Google Scholar 

  8. Benkov K, Lu Y, Patel A, Rahhal R, Russell G, Teitelbaum J, f.t.N.C.o.I.B. Disease, role of Thiopurine metabolite testing and Thiopurine methyltransferase determination in pediatric IBD. J Pediatr Gastroenterol Nutr. 2013;56(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  9. Coelho T, Andreoletti G, Ashton JJ, Batra A, Afzal NA, Gao Y, Williams AP, Beattie RM, Ennis S. Genes implicated in thiopurine-induced toxicity: comparing TPMT enzyme activity with clinical phenotype and exome data in a paediatric IBD cohort. Sci Rep. 2016;6(1):1–9.

    Article  Google Scholar 

  10. Tamm R, Mägi R, Tremmel R, Winter S, Mihailov E, Smid A, Möricke A, Klein K, Schrappe M, Stanulla M, Houlston R, Weinshilboum R, Mlinarič Raščan I, Metspalu A, Milani L, Schwab M, Schaeffeler E. Polymorphic variation in TPMT is the principal determinant of TPMT phenotype: a Meta-analysis of three genome-wide association studies. Clin Pharmacol Ther. 2017;101(5):684–95.

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, He B, Shi J, Li Q, Zhu H-J. Comparative proteomics analysis of human liver Microsomes and S9 fractions. Drug Metab Dispos. 2020;48(1):31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He B, Shi J, Wang X, Jiang H, Zhu H-J. Label-free absolute protein quantification with data-independent acquisition. J Proteome. 2019;200:51–9.

    Article  CAS  Google Scholar 

  13. He B, Shi J, Wang X, Jiang H, Zhu H-J. Genome-wide pQTL analysis of protein expression regulatory networks in the human liver. BMC Biol. 2020;18(1):97.

  14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, De Bakker PIW, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marees AT, De Kluiver H, Stringer S, Vorspan F, Curis E, Marie-Claire C, Derks EM. A tutorial on conducting genome-wide association studies: quality control and statistical analysis. Int J Methods Psychiatr Res. 2018;27(2):e1608.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gurwitz D, Rodríguez-Antona C, Payne K, Newman W, Gisbert JP, De Mesa EG, Ibarreta D. Improving pharmacovigilance in Europe: TPMT genotyping and phenotyping in the UK and Spain. Eur J Hum Genet. 2009;17(8):991–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tai H-L, Krynetski EY, Schuetz EG, Yanishevski Y, Evans WE. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci. 1997;94(12):6444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ujiie S, Sasaki T, Mizugaki M, Ishikawa M, Hiratsuka M. Functional characterization of 23 allelic variants of thiopurine S-methyltransferase gene (TPMT*2 – *24). Pharmacogenet Genomics. 2008;18(10):887–93.

    Article  CAS  PubMed  Google Scholar 

  19. Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM. Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet Genomics. 2005;15(11):801–15.

    Article  CAS  PubMed  Google Scholar 

  20. Hon YY, Fessing MY, Pui C-H, Relling MV, Krynetski EY, Evans WE. Polymorphism of the Thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet. 1999;8(2):371–6.

    Article  CAS  PubMed  Google Scholar 

  21. Srimartpirom S, Tassaneeyakul W, Kukongviriyapan V, Tassaneeyakul W. Thiopurine S-methyltransferase genetic polymorphism in the Thai population. Br J Clin Pharmacol. 2004;58(1):66–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ando M, Ando Y, Hasegawa Y, Sekido Y, Shimokata K, Horibe K. Genetic polymorphisms of thiopurine S-methyltransferase and 6-mercaptopurine toxicity in Japanese children with acute lymphoblastic leukaemia. Pharmacogenet Genomics. 2001;11(3):269–73.

    Article  CAS  Google Scholar 

  23. Garat A, Cauffiez C, Renault N, Lo-Guidice JM, Allorge D, Chevalier D, Houdret N, Chavatte P, Loriot MA, Gala JL, Broly F. Characterisation of novel defective thiopurine S-methyltransferase allelic variants. Biochem Pharmacol. 2008;76(3):404–15.

    Article  CAS  PubMed  Google Scholar 

  24. McLeod HL, Lin J-S, Scott EP, Pui C-H, Evans WE. Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther. 1994;55(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  25. Cooper SC, Ford LT, Berg JD, Lewis MJ. Ethnic variation of thiopurine S-methyltransferase activity: a large, prospective population study. Pharmacogenomics. 2008;9(3):303–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ogungbenro K, Aarons L. Physiologically based pharmacokinetic model for 6-mercpatopurine: exploring the role of genetic polymorphism in TPMT enzyme activity. Br J Clin Pharmacol. 2015;80(1):86–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Jie Zhu.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, L.S., Wang, X., Shi, J. et al. Genome-Wide Association Study for the Genetic Determinants of Thiopurine Methyltransferase Protein Expression in Human Livers and Racial Differences. Pharm Res 40, 2525–2531 (2023). https://doi.org/10.1007/s11095-023-03558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03558-1

Keywords

Navigation