Skip to main content

Advertisement

Log in

Impact of Primary Container Closure System on PS80 Oxidation and the Mechanistic Understanding

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Polysorbate oxidation can potentially lead to protein degradation and loss of potency, which has been a challenge for the pharmaceutical industry for decades. Many factors have been reported to impact polysorbate oxidation rate, including types of elemental impurities, peroxide content, pH, light exposure, grades of polysorbate, etc. Even though there are many publications in this field, the impact of primary container closure system on PS80 oxidation has not been systematically studied or reported. The purpose of the current study is to close this gap.

Methods

Placebo PS80 formulations were prepared and filled into different container-closure systems (CCS), including different types of glass vials and polymer vials. Oleic acid content was monitored on stability as a surrogate value for PS80 content, which will decline upon oxidation. ICP-MS analysis and metal spiking studies were carried out to correlate the PS80 oxidation rate with metals leached from primary containers.

Results

PS80 degrades via oxidation at the fastest rate in glass vials with high coefficient of expansion (COE), followed by glass vials with low coefficient of expansion, while polymer vials minimized the oxidation of PS80 in most formulation conditions explored in this paper. ICP-MS analysis demonstrated that 1) 51 COE glass has more metal leachables than 33 COE glass in this study; and 2) More metal leachables correlates with faster PS80 oxidation. Metal spiking studies confirmed the hypothesis that aluminum and iron have a synergistic catalysis effect on PS80 oxidation.

Conclusions

Primary containers of drug products play a significant role in the rate of PS80 oxidation. This study revealed a new major contributor to PS80 oxidation and potential mitigation strategy for biological drug products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bam NB, Randolph TW, Cleland JL. Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique. Pharm Res. 1995;12(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  2. Li Y, Lee JS. Staring at protein-surfactant interactions: fundamental approaches and comparative evaluation of their combinations - a review. Anal Chim Acta. 2019;1063:18–39.

    Article  CAS  PubMed  Google Scholar 

  3. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129–88.

    Article  CAS  PubMed  Google Scholar 

  4. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.

    Article  CAS  PubMed  Google Scholar 

  5. Khan TA, Mahler HC, Kishore RS. Key interactions of surfactants in therapeutic protein formulations: a review. Eur J Pharm Biopharm. 2015;97(Pt A):60–7.

    Article  CAS  PubMed  Google Scholar 

  6. Brovc EV, Mravljak J, Sink R, Pajk S. Rational design to biologics development: the polysorbates point of view. Int J Pharm. 2020;581:119285.

    Article  CAS  PubMed  Google Scholar 

  7. Katakam M, Banga AK. Use of poloxamer polymers to stabilize recombinant human growth hormone against various processing stresses. Pharm Dev Technol. 1997;2(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  8. Katakam M, Bell LN, Banga AK. Effect of surfactants on the physical stability of recombinant human growth hormone. J Pharm Sci. 1995;84(6):713–6.

    Article  CAS  PubMed  Google Scholar 

  9. Strickley RG, Lambert WJ. A review of formulations of commercially available antibodies. J Pharm Sci. 2021;110(7):2590–2608 e56.

    Article  CAS  PubMed  Google Scholar 

  10. Wuchner K, Yi L, Chery C, Nikels F, Junge F, Crotts G, Rinaldi G, Starkey JA, Bechtold-Peters K, Shuman M, Leiss M, Jahn M, Garidel P, de Ruiter R, Richer SM, Cao S, Peuker S, Huille S, Wang T, Le Brun V. Industry perspective on the use and characterization of Polysorbates for biopharmaceutical products part 1: survey report on current state and common practices for handling and control of Polysorbates. J Pharm Sci. 2022;111(5):1280–91.

    Article  CAS  PubMed  Google Scholar 

  11. Gopalrathnam G, Sharma AN, Dodd SW, Huang L. Impact of stainless steel exposure on the oxidation of Polysorbate 80 in histidine placebo and active monoclonal antibody formulation. PDA J Pharm Sci Technol. 2018;72(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  12. Ha E, Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91(10):2252–64.

    Article  CAS  PubMed  Google Scholar 

  13. Kranz W, Wuchner K, Corradini E, Berger M, Hawe A. Factors influencing Polysorbate's sensitivity against enzymatic hydrolysis and oxidative degradation. J Pharm Sci. 2019;108(6):2022–32.

    Article  CAS  PubMed  Google Scholar 

  14. Tomlinson A, Demeule B, Lin B, Yadav S. Polysorbate 20 degradation in biopharmaceutical formulations: quantification of free fatty acids, characterization of particulates, and insights into the degradation mechanism. Mol Pharm. 2015;12(11):3805–15.

    Article  CAS  PubMed  Google Scholar 

  15. Larson NR, Wei Y, Prajapati I, Chakraborty A, Peters B, Kalonia C, Hudak S, Choudhary S, Esfandiary R, Dhar P, Schoneich C, Middaugh CR. Comparison of Polysorbate 80 hydrolysis and oxidation on the aggregation of a monoclonal antibody. J Pharm Sci. 2020;109(1):633–9.

    Article  CAS  PubMed  Google Scholar 

  16. Fang L, Richard CA, Shi GH, Dong X, Rase M, Wang T. Physicochemical excipient-container interactions in prefilled syringes and their impact on syringe functionality. PDA J Pharm Sci Technol. 2021;75(4):317–31.

    Article  CAS  PubMed  Google Scholar 

  17. Agarkhed M, O'Dell C, Hsieh MC, Zhang J, Goldstein J, Srivastava A. Effect of polysorbate 80 concentration on thermal and photostability of a monoclonal antibody. AAPS PharmSciTech. 2013;14(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Bensaid F, Dagallier C, Authelin JR, Audat H, Filipe V, Narradon C, Guibal P, Clavier S, Wils P. Mechanistic understanding of metal-catalyzed oxidation of polysorbate 80 and monoclonal antibody in biotherapeutic formulations. Int J Pharm. 2022;615:121496.

    Article  CAS  PubMed  Google Scholar 

  19. Morar-Mitrica S, Puri M, Beumer Sassi A, Fuller J, Hu P, Crotts G, Nesta D. Development of a stable low-dose aglycosylated antibody formulation to minimize protein loss during intravenous administration. MAbs. 2015;7(4):792–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donbrow ME, Pillersdorf A. Autooxidation of Polysorbates. J Pharm Sci. 1978;67(12):1676–81.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng X, Sutton AT, Yang RS, Miller DV, Pagels B, Rustandi RR, Welch J, Payne A, Haverick M. Extensive characterization of Polysorbate 80 oxidative degradation under stainless steel conditions. J Pharm Sci. 2023;112(3):779–89.

    Article  CAS  PubMed  Google Scholar 

  22. Chen B, Bautista R, Yu K, Zapata GA, Mulkerrin MG, Chamow SM. Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms. Pharm Res. 2003;20(12):1952–60.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Yadav S, John Wang Y, Mozziconacci O, Schneich C. Dual effect of histidine on Polysorbate 20 stability: mechanistic studies. Pharm Res. 2018;35(2):33.

    Article  CAS  PubMed  Google Scholar 

  24. Singh SR, Zhang J, O'Dell C, Hsieh MC, Goldstein J, Liu J, Srivastava A. Effect of polysorbate 80 quality on photostability of a monoclonal antibody. AAPS PharmSciTech. 2012;13(2):422–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu H, Jin Y, Menon R, Laskowich E, Bareford L, de Vilmorin P, Kolwyck D, Yeung B, Yi L. Characterization of Polysorbate 80 by liquid chromatography-mass spectrometry to understand its susceptibility to degradation and its oxidative degradation pathway. J Pharm Sci. 2022;111(2):323–34.

    Article  CAS  PubMed  Google Scholar 

  26. Yoneda S, Torisu T, Uchiyama S. Development of syringes and vials for delivery of biologics: current challenges and innovative solutions. Expert Opin Drug Deliv. 2021;18(4):459–70.

    Article  CAS  PubMed  Google Scholar 

  27. Li G, Schoneker D, Ulman KL, Sturm JJ, Thackery LM, Kauffman JF. Elemental Impurities in Pharmaceutical Excipients. J Pharm Sci. 2015;104(12):4197–206.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao J, Lavalley V, Mangiagalli P, Wright JM, Bankston TE. Glass delamination: a comparison of the inner surface performance of vials and pre-filled syringes. AAPS Pharm Sci Tech. 2014;15(6):1398–409.

    Article  Google Scholar 

  29. Ogawa T, Miyajima M, Nishimoto N, Minami H, Terada K. Comparisons of aluminum and silica elution from various glass vials. Chem Pharm Bull (Tokyo). 2016;64(2):150–60.

    Article  CAS  PubMed  Google Scholar 

  30. Mittag JJ, Trutschel ML, Kruschwitz H, Mader K, Buske J, Garidel P. Characterization of radicals in polysorbate 80 using electron paramagnetic resonance (EPR) spectroscopy and spin trapping. Int J Pharm X. 2022;4:100123.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Härdter N, Menzen T, Winter G. Minimizing oxidation of freeze-dried monoclonal antibodies in polymeric vials using a smart packaging approach. Pharmaceutics. 2021;13(10):1695. https://doi.org/10.3390/pharmaceutics13101695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshimura Y, Matsuzaki Y, Watanabe T, Uchiyama K, Ohsawa K, Imaeda K. Effects of buffer solutions and chelators on the generation of hydroxyl radical and the lipid peroxidation in the Fenton reaction system. J Clin Biochem Nutr. 1992;13:147–54.

    Article  CAS  Google Scholar 

  33. Kang Kong DL, Ma W, Zhou Q, Tang G, Hou Z. Aluminum(III) triflate-catalyzed selective oxidation of glycerol to formic acid with hydrogen peroxide. Chin J Catal. 2019;40:534–42.

    Article  Google Scholar 

  34. Exley C. The pro-oxidant activity of aluminum. Free Radic Biol Med. 2004;36(3):380–7.

    Article  CAS  PubMed  Google Scholar 

  35. Dalmo Mandellia YNK, da Silvaa CAR, Carvalhoa WA, Pescarmonad PP, Daniele de A, Cellaa PT, de Paivaa GB, Shul’pin. Oxidation of olefins with H2O2catalyzed by gallium(III) nitrate andaluminum (III) nitrate in solution. J Mol Catal A Chem. 2016;422:216–20.

    Article  Google Scholar 

  36. Shiju NR, Fiddy S, Sonntag O, Stockenhuber M, Sankar G. Selective oxidation of benzene to phenol over FeAlPO catalysts using nitrous oxide as oxidant. Chem Commun (Camb). 2006;47:4955–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. David P Allen, Dr. Vincent J Corvari, Dr. Michael R De Felippis, Dr. Brian J Harmon, Dr. Galen Shi and Dr. Ronald G Iacocca for their support and guidance of research, as well as comprehensive review of the manuscript. The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 405 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mould, R., Sargent, P.W., Huang, Y. et al. Impact of Primary Container Closure System on PS80 Oxidation and the Mechanistic Understanding. Pharm Res 40, 1965–1976 (2023). https://doi.org/10.1007/s11095-023-03556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03556-3

Keywords

Navigation