Skip to main content

Advertisement

Log in

Assessing the Impact of Punch Geometries on Tablet Capping Using a Newly Proposed Capping Index

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Increased tablet anisotropy could lead to increased tablet capping propensity. Tooling design variables such as cup depth could serve as a key player for inducing tablet anisotropy.

Methods

A new capping index (CI) consisting of the ratio of compact anisotropic index (CAI) and material anisotropic index (MAI) is proposed to evaluate tablet capping propensity as a function of punch cup depth. CAI is the ratio of axial to radial breaking force. MAI is the ratio of axial to radial Young’s modulus. The impact of various punch cup depths [flat face, flat face beveled edge, flat face radius edge, standard concave, shallow concave, compound concave, deep concave, and extra deep concave] on the capping propensity of model acetaminophen tablets was studied. Tablets were manufactured at 50, 100, 200, 250, and 300 MPa compression pressure at 20 RPM on different cup depth tools using Natoli NP-RD30 tablet press. A partial least squares model (PLS) was computed to model the impact of the cup depth and compression parameters on the CI.

Results

The PLS model exhibited a positive correlation of increased cup depth to the capping index. The finite elemental analysis confirmed that a high capping tendency with increased cup depth is a direct result of non-uniform stress distribution across powder bed.

Conclusions

Certainly, a proposed new capping index with multivariate statistical analysis gives guidance in selecting tool design and compression parameters for robust tablets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haware RV, Tho I, Bauer-Brandl A. Multivariate analysis of relationships between material properties, process parameters and tablet tensile strength for α-lactose monohydrates. Eur J Pharm Biopharm. 2009;73:424–31.

    Article  CAS  PubMed  Google Scholar 

  2. Narayan P, Hancock BC. The relationship between the particle properties, mechanical behavior, and surface roughness of some pharmaceutical excipient compacts. Materials Sci Eng A Elsevier. 2003;355:24–36.

    Article  Google Scholar 

  3. Anbalagan P, Heng PWS, Liew CV. Tablet compression tooling–impact of punch face edge modification. Int J Pharm Elsevier. 2017;524:373–81.

    Article  CAS  Google Scholar 

  4. Akseli I, Hancock BC, Cetinkaya C. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms. Int J Pharm. 2009;377:35–44.

    Article  CAS  PubMed  Google Scholar 

  5. Yu LX, Ellison CD, Conner DP, Lesko LJ, Hussain AS. Influence of drug release properties of conventional solid dosage forms on the systemic exposure of highly soluble drugs. AAPS Pharm Sci. 2001;3:86–92.

    Article  Google Scholar 

  6. Akseli I, Ladyzhynsky N, Katz J, He X. Development of predictive tools to assess capping tendency of tablet formulations. Powder Technol. 2013;236:139–48.

    Article  CAS  Google Scholar 

  7. Malamataris S, Hatjichristos T, Rees JE. Apparent compressive elastic modulus and strength isotropy of compacts formed from binary powder mixes. Int J Pharm. 1996;141:101–8.

    Article  CAS  Google Scholar 

  8. Hey H, Jorgensen F, Sorensen K, Hasselbalch H, Wamberg T. Oesophageal transit of six commonly used tablets and capsules. BMJ. 1982;285:1717–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feufel MA, Rauwolf G, Meier FC, Karapinar-Çarkit F, Heibges M. Heuristics for designing user-centric drug products: lessons learned from human factors and ergonomics. Br J Clin Pharmacol. 2020;86:1989–99.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sinka IC, Cunningham JC, Zavaliangos A. Analysis of tablet compaction. II. Finite element analysis of density distributions in convex tablets. J Pharm Sci. 2004;93:2040–53.

    Article  CAS  PubMed  Google Scholar 

  11. Furukawa R, Chen Y, Horiguchi A, Takagaki K, Nishi J, Konishi A, et al. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets during a diametrical compression test. Int J Pharm. 2015;493:182–91.

    Article  CAS  PubMed  Google Scholar 

  12. USP General Chapter. USP 1062 Tablet Compression Characterization. 2020;42(5):1–37

  13. Patel D, Patel VD, Sedlock R, Haware RV. Negative porosity issue in the Heckel analysis: a possible solution. Int J Pharm. 2022;627:122205.

    Article  CAS  PubMed  Google Scholar 

  14. Pitt KG, Newton JM, Stanley P. Tensile fracture of doubly-convex cylindrical discs under diametral loading. J Mater Sci. 1988;23:2723–8.

    Article  Google Scholar 

  15. Holman LE, Leuenberger H. The relationship between solid fraction and mechanical properties of compacts - the percolation theory model approach. Int J Pharm. 1988;46:35–44.

    Article  CAS  Google Scholar 

  16. Patel DB, Patel VD, Patel Y, Sturgis JC, Sedlock R, Haware RV. Compression–decompression modulus (CDM)–an alternative/complementary approach to Heckel’s analysis. Pharm Dev Technol Taylor Francis. 2022;27:805–15.

    Article  CAS  Google Scholar 

  17. Haware RV, Dave VS, Kakarala B, Delaney S, Staton S, Munson E, et al. Vegetable-derived magnesium stearate functionality evaluation by DM3 approach. Eur J Pharm Sci. 2016;89:115–24.

    Article  CAS  PubMed  Google Scholar 

  18. Patel VD, Rathod V, Haware RV, Stagner WC. Optimized L-SNEDDS and spray-dried S-SNEDDS using a linked QbD-DM3 rational design for model compound ketoprofen. Int J Pharm Elsevier. 2023;631:122494.

    Article  CAS  Google Scholar 

  19. Martens H, Martens M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Prefer. 2000;11:5–16.

    Article  Google Scholar 

  20. Han LH, Elliott JA, Bentham AC, Mills A, Amidon GE, Hancock BC. A modified Drucker-Prager cap model for die compaction simulation of pharmaceutical powders. Int J Solids Struct. 2008;45:3088–106.

    Article  Google Scholar 

  21. Nyström C, Karehill P-G. The importance of intermolecular bonding forces and the concept of bonding surface area. Drugs Pharm Sci. 1996;71:17–54.

    Google Scholar 

  22. Abdel-Hamid S, Betz G. Investigating the effect of punch geometry on high speed tableting through radial die-wall pressure monitoring. Pharm Dev Technol. 2013;18:46–54.

    Article  CAS  PubMed  Google Scholar 

  23. Kadiri MS, Michrafy A. The effect of punch’s shape on die compaction of pharmaceutical powders. Powder Technol Elsevier. 2013;239:467–77.

    Article  CAS  Google Scholar 

  24. Paul S, Sun CC. Gaining insight into tablet capping tendency from compaction simulation. Int J Pharm. 2017;524:111–20.

    Article  CAS  PubMed  Google Scholar 

  25. Basim P, Haware RV, Dave RH. Tablet capping predictions of model materials using multivariate approach. Int J Pharm. 2019;569:118548.

    Article  CAS  PubMed  Google Scholar 

  26. Natoli D, Levin M, Tsygan L, Liu L. Development, Optimization, and scale-up of process parameters. Developing Solid Oral Dosage Forms Elsevier. 2017:917–51.

  27. Sugimori K, Mori S, Kawashima Y. Characterization of die wall pressure to predict capping of flat- or convex-faced drug tablets of various sizes. Powder Technol. 1989;58:259–64.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul V. Haware.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1038 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V.D., Patel, D.B., Sturgis, J.C. et al. Assessing the Impact of Punch Geometries on Tablet Capping Using a Newly Proposed Capping Index. Pharm Res 40, 2935–2945 (2023). https://doi.org/10.1007/s11095-023-03555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03555-4

Keywords

Navigation