Skip to main content
Log in

Human Serum Albumin-enriched Clopidogrel Bisulfate Nanoparticle Alleviates Cerebral Ischemia–Reperfusion Injury in Rats

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Cerebral ischemiareperfusion (I/R) injury remains a leading cause of mobility and mortality among patients with ischemic stroke. This study aims to develop a human serum albumin (HSA)-enriched nanoparticle platform for solubilizing clopidogrel bisulfate (CLP) for intravenous administration, and to explore the protective effect of HSA-enriched nanoparticles loaded with CLP (CLP-ANPs) against cerebral I/R injury in transient middle cerebral artery occlusion (MCAO) rat model.

Methods

CLP-ANPs were synthesized via a modified nanoparticle albumin-bound technology, lyophilized, and then characterized by morphology, particle size, zeta potential, drug loading capacity, encapsulation efficiency, stability and in vitro release kinetics. In vivo pharmacokinetic studies were conducted using Sprague–Dawley (SD) rats. Also, an MCAO rat model was established to explore the therapeutic effect of CLP-ANPs on cerebral I/R injury.

Results

CLP-ANPs remained spherical particles with a layer of proteins forming protein corona. Lyophilized CLP-ANPs after dispersion displayed an average size of about 235.6 ± 6.6 nm (PDI = 0.16 ± 0.08) with a zeta potential of about − 13.5 ± 1.8 mV. CLP-ANPs achieved sustained release for up to 168 h in vitro. Next, a single injection of CLP-ANPs dose-dependently reversed the histopathological changes induced by cerebral I/R injury possibly via attenuating apoptosis and reducing oxidative damages in the brain tissues.

Conclusions

CLP-ANPs represent a promising and translatable platform system for the management of cerebral I/R injury during ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Mayowa OO, Amanda GT, Ajay M, Marie I, Sheila M, Walter DJ, et al. Primary stroke prevention worldwide: translating evidence into action. Lancet Public Health. 2022;7(1):e74–85.

    Article  Google Scholar 

  2. Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, GBD 2016 Lifetime Risk of Stroke Collaborators, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379(25):2429–37.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. heart disease and stroke statistics-2022 update: a report from the american heart associationexternal icon. Circulation. 2022;145(8):e153–639.

    Article  PubMed  Google Scholar 

  4. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5(1):70.

    Article  PubMed  Google Scholar 

  5. Diener HC, Ringleb PA, Savi P. Clopidogrel for the secondary prevention of stroke. Expert Opin Pharmacother. 2005;6(5):755–64.

    Article  CAS  PubMed  Google Scholar 

  6. Sandercock PA, Counsell C, Tseng MC, Cecconi E. Oral antiplatelet therapy for acute ischaemic stroke. Cochrane Database Syst Rev. 2014;2014(3):CD000029.

    PubMed  PubMed Central  Google Scholar 

  7. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77.

    Article  PubMed  Google Scholar 

  8. Wang D, Jing Z, Xin M, Song S, Jing X, Wang M, et al. Experimental study on electroacupuncture in living hippocampus [Ca2+] i during cerebral ischemia 6h and reperfusion injury in rats. J Sichuan Tradit Chin Med. 2009;27(8):27–9.

    Google Scholar 

  9. Yang Y, Li Q, Miyashita H, Yang T, Shuaib A. Different dynamic patterns of extracellular glutamate release in rat hippocampus after permanent or 30-min transient cerebral ischemia and histological correlation. Neuropathology. 2001;21(3):181–7.

    Article  CAS  PubMed  Google Scholar 

  10. Taguchi J, Graf R, Rosner G, Heiss WD. Prolonged transient ischemia results in impaired CBF recovery and secondary glutamate accumulation in cats. Cereb Blood Flow Metab. 1996;16(2):271–9.

    Article  CAS  Google Scholar 

  11. Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, et al. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. Cereb Blood Flow Metab. 1998;18(2):196–205.

    Article  CAS  Google Scholar 

  12. Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res. 2004;61(3):498–511.

    Article  CAS  PubMed  Google Scholar 

  13. Jickling GC, Liu DZ, Stamova B, Ander BP, Zhan XH, Lu AG, et al. Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab. 2014;34(2):185–99.

    Article  CAS  PubMed  Google Scholar 

  14. Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, et al. Animal models of cerebral ischemia: A review. Biomed Pharmacother. 2020;131: 110686.

    Article  CAS  PubMed  Google Scholar 

  15. Grotta JC. Antiplatelet Therapy after Ischemic Stroke or TIA. N Engl J Med. 2018;379(3):291–2.

    Article  PubMed  Google Scholar 

  16. Hackam DG, Spence JD. Antiplatelet Therapy in Ischemic Stroke and Transient Ischemic Attack. Stroke. 2019;50(3):773–8.

    Article  PubMed  Google Scholar 

  17. Duarte JD, Cavallari LH. Pharmacogenetics to guide cardiovascular drug therapy. Nat Rev Cardiol. 2021;18(9):649–65.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Greving JP, Diener HC, Reitsma JB, Bath PM, Csiba L, Hacke W, et al. Antiplatelet Therapy After Noncardioembolic Stroke. Stroke. 2019;50(7):1812–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kheiri B, Osman M, Abdalla A, Haykal T, Swaid B, Ahmed S, et al. Clopidogrel and aspirin after ischemic stroke or transient ischemic attack: an updated systematic review and meta-analysis of randomized clinical trials. J Thromb Thrombolysis. 2019;47(2):233–47.

    Article  CAS  PubMed  Google Scholar 

  20. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(7):2160–236.

    Article  PubMed  Google Scholar 

  21. Duconge J, Hernandez-Suarez DF. Potential Usefulness of Clopidogrel Pharmacogenetics in Cerebral Endovascular Procedures and Carotid Artery Stenting. Curr Clin Pharmacol. 2017;12(1):11–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pan Y, Chen W, Xu Y, Yi X, Han Y, Yang Q, et al. Genetic Polymorphisms and Clopidogrel Efficacy for Acute Ischemic Stroke or Transient Ischemic Attack: A Systematic Review and Meta-Analysis. Circulation. 2017;135(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  23. Stingl JC, Scholl C, Bosch JE, Viviani R. Genetic polymorphism of CYP2C19 and subcortical variability in the human adult brain. Transl Psychiatry. 2021;11:467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang ZY, Chen M, Zhu LL, Yu LS, Zeng S, Xiang MX, et al. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag. 2015;11:449–67.

    PubMed  PubMed Central  Google Scholar 

  25. Arya V, Mahajan P, Saraf A, Mohanty A, Sawhney JP, Bhargava M. Association of CYP2C19, CYP3A5 and GPIIb/IIIa gene polymorphisms with Aspirin and Clopidogrel Resistance in a cohort of Indian patients with Coronary Artery Disease. Int J Lab Hematol. 2015;37(6):809–18.

    Article  CAS  PubMed  Google Scholar 

  26. Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci U S A. 2016;113(4):1074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mulder TAM, van Eerden RAG, de With M, Elens L, Hesselink DA, Matic M, et al. CYP3A4∗22 Genotyping in Clinical Practice: Ready for Implementation? Front Genet. 2021;12: 711943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sienkiewicz-Oleszkiewicz B, Wiela-Hojeńska A. CYP2C19 polymorphism in relation to the pharmacotherapy optimization of commonly used drugs. Pharmazie. 2018;73(11):619–24.

    CAS  PubMed  Google Scholar 

  29. Wu B, Yu J, Luo Y, Wu L, Zhang Z, Deng L. An Albumin-Enriched Nanocomplex Achieves Systemic Delivery of Clopidogrel Bisulfate to Ameliorate Renal Ischemia Reperfusion Injury in Rats. Mol Pharm. 2022;19(11):3934–47.

    Article  CAS  PubMed  Google Scholar 

  30. Maier R, Fries MR, Buchholz C, Zhang F, Schreiber F. Human versus Bovine Serum Albumin: A Subtle Difference in Hydrophobicity Leads to Large Differences in Bulk and Interface Behavior. Cryst Growth Des. 2021;21(9):5451–9.

    Article  CAS  Google Scholar 

  31. Wang C, Chen B, He M, Hu B. Composition of Intracellular Protein Corona around Nanoparticles during Internalization. ACS Nano. 2021;15(2):3108–22.

    Article  CAS  PubMed  Google Scholar 

  32. Sadhukha T, Prabha S. Encapsulation in nanoparticles improves anti-cancer efficacy of carboplatin. AAPS PharmSciTech. 2014;15(4):1029–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Honary S, Ebrahimi P, Hadianamrei R. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Pharm Dev Technol. 2014;19(8):987–98.

    Article  CAS  PubMed  Google Scholar 

  34. Md S, Ali M, Baboota S, Sahni JK, Bhatnagar A, Ali J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm. 2014;40(2):278–87.

    Article  PubMed  Google Scholar 

  35. Amani H, Habibey R, Shokri F, Hajmiresmail SJ, Akhavan O, Mashaghi A, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep. 2019;9(1):6044.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao J, et al. Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflammation. 2020;17(1):270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang K, Zeng L, Ge A, Chen Y, Wang S, Zhu X, et al. Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology. Front Pharmacol. 2021;12: 601846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kramer M, Dang J, Baertling F, Denecke B, Clarner T, Kirsch C, et al. TTC staining of damaged brain areas after MCA occlusion in the rat does not constrict quantitative gene and protein analyses. J Neurosci Methods. 2010;187(1):84–9.

    Article  PubMed  Google Scholar 

  39. Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc 2008;2008:pdb.prot4986.

  40. Zhang F, Weggler S, Ziller MJ, Ianeselli L, Heck BS, Hildebrandt A, et al. Universality of protein reentrant condensation in solution induced by multivalent metal ions. Proteins Struct Funct Bioinf. 2010;78(16):3450–7.

    Article  CAS  Google Scholar 

  41. Luo Y, Deng L, Zhang Z, He L. Preparation and characterization of lyophilized clopidogrel bisulfate nanoparticles for intravenous administration. J Shenyang Pharm Univ. 2023;328(5):539–46.

  42. Sonu SS, Kuldeep S, Deepak B, Mohan PR, Vidya BL. Estimation of carboxylic acid metabolite of clopidogrel in Wistar rat plasma by HPLC and its application to a pharmacokinetic study. J Chromatogr B. 2005;821(2):173–80.

    Article  Google Scholar 

  43. Chen F, Yang Y, Fang C, Zhao J, Han M, Zhu Q, et al. Effect of fluvoxamine on the pharmacokinetics and pharmacodynamics of clopidogrel in rats. Xenobiotica. 2015;45(12):1122–8.

    Article  CAS  PubMed  Google Scholar 

  44. Xiang H, Zhang Q, Han Y, Yang L, Zhang Y, Liu Q, et al. Novel brain-targeting 3-n-butylphthalide prodrugs for ischemic stroke treatment. J Control Release. 2021;335:498–514.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang J, Dai J, Cui H. Vitexin reverses the autophagy dysfunction to attenuate MCAO-induced cerebral ischemic stroke via mTOR/Ulk1 pathway. Biomed Pharmacother. 2018;99:583–90.

    Article  CAS  PubMed  Google Scholar 

  46. Barahimi P, Karimian M, Nejati M, AzamiTameh A, Atlasi MA. Oxytocin improves ischemic stroke by reducing expression of excitatory amino acid transporter 3 in rat MCAO model. J Immunoassay Immunochem. 2021;42(5):513–24.

    Article  CAS  PubMed  Google Scholar 

  47. Bian HT, Hu Q, Liang XQ, Chen D, Li B, Tang JQ, et al. Hyperbaric oxygen preconditioning attenuates hemorrhagic transformation through increasing PPARγ in hyperglycemic MCAO rats. Exp Neurol. 2015;265:22–9.

    Article  CAS  PubMed  Google Scholar 

  48. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):654–65.

    Article  CAS  PubMed  Google Scholar 

  49. Wu B, Nan S, Zhang H, Deng L, Gong T, Zhang Z, et al. Effect of Albumin Corona Conformation on In Vitro and In Vivo Profiles of Intravenously Administered Nanoparticles. Mol Pharm. 2023. https://doi.org/10.1021/acs.molpharmaceut.3c00021.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L Deng and YT Luo designed the project. YT Luo performed all experiments and drafted the manuscript. YL Xia and HN Zhang helped with animal studies. YZ Lin, LL He, T Gong, and ZR Zhang: resources and discussions. L Deng, conceptualization, resources, project administration, writing—review & editing.

Funding

Authors are grateful for the financial support from the Natural Science Foundation of China (U20A20411), Sichuan Province Department of Science and Technology (2021YJ0224), 111 project (B18035) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Deng.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1547 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Xia, Y., Zhang, H. et al. Human Serum Albumin-enriched Clopidogrel Bisulfate Nanoparticle Alleviates Cerebral Ischemia–Reperfusion Injury in Rats. Pharm Res 40, 1821–1833 (2023). https://doi.org/10.1007/s11095-023-03543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03543-8

Keywords

Navigation