Skip to main content

Advertisement

Log in

Mechanistic Insight of Polymer Effects on the Kinetic of Solution-Mediated Phase Transformation of Nitrofurantoin Anhydrate to Monohydrate

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nitrofurantoin is an effective antibacterial drug for the treatment of lower urinary tract infection. However, the anhydrate form can easily transform to the less soluble hydrate form (monohydrate) during dissolution, resulting in a reduction of dissolution rate and oral bioavailability. Therefore, inhibition of phase transformation is vital to stabilize the quality of drugs.

Methods

In this work, the potential of polyethylene glycol (PEG 8000), polyvinyl pyrrolidone (PVP K30), poloxamer 188 and hydroxypropyl methylcellulose (HPMC) to inhibit the hydration of nitrofurantoin during dissolution was investigated by experimental and simulation approaches.

Results

The rates of phase transformation were decreased in the presence of PEG 8000 and poloxamer 188, and PVP K30 and HPMC completely inhibited the phase transformation of anhydrate. The abundant hydrogen bond donor and acceptor groups of PVP and HPMC may easily establish intermolecular interactions with nitrofurantoin molecules, accounting for stronger inhibition of nucleation. Besides, the molecular dynamic simulation further indicated the formation of more extensive interactions between PVP K30 (or HPMC) and the (111) face of monohydrate, suggesting that the strong absorption of polymers on the surface and thus block the sites for incorporation of new growth.

Conclusion

This study provides a mechanistic insight into the inhibition of nitrofurantoin hydration by polymeric additives, which helps design formulations and improve the physical stability of anhydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Huttner A, Verhaegh EM, Harbarth S, Muller AE, Theuretzbacher U, Mouton JW. Nitrofurantoin revisited: a systematic review and meta-analysis of controlled trials. J Antimicrob Chemother. 2015;70:2456–64.

    Article  CAS  PubMed  Google Scholar 

  2. Cherukuvada S, Babu NJ, Nangia A. Nitrofurantoin-p-aminobenzoic acid cocrystal: Hydration stability and dissolution rate studies. J Pharm Sci. 2011;100:3233–44.

    Article  CAS  PubMed  Google Scholar 

  3. Segalina A, Pavan B, Ferretti V, Spizzo F, Botti G, Bianchi A, Pastore M, Dalpiaz A. Cocrystals of nitrofurantoin: how coformers can modify its solubility and permeability across intestinal cell monolayers. Cryst Growth Des. 2022;22:3090–106.

    Article  CAS  Google Scholar 

  4. Vangala VR, Chow PS, Tan RBH. Co-crystals and Co-crystal hydrates of the antibiotic nitrofurantoin: structural studies and physicochemical properties. Cryst Growth Des. 2012;12:5925–38.

    Article  CAS  Google Scholar 

  5. Pienaar EW, Caira MR, Lötter AP. Polymorphs of nitrofurantoin. 2. Preparation and X-ray crystal structures of two anhydrous forms of nitrofurantoin. J Crystallogr Spectrosc Res. 1993;23:785–790.

  6. Pienaar EW, Caira MR, Lötter AP. Polymorphs of nitrofurantoin. I. Preparation and X-ray crystal structures of two monohydrated forms of nitrofurantoin. J Crystallogr Spectrosc Res. 1993;23:739–744.

  7. Caira MR, Pienaar EW, Lötter AP. Polymorphism and pseudopolymorphism of the antibacterial nitrofurantoin. Mol Cryst Liq Cryst Sci Technol Sect A. 1996;279:241–264.

  8. Otsuka M, Teraoka R, Matsuda Y. Rotating-disk dissolution kinetics of nitrofurantoin anhydrate and monohydrate at various temperatures. Pharm Res. 1992;9:307–11.

    Article  CAS  PubMed  Google Scholar 

  9. Otsuka M, Teraoka R, Matsuda Y. Physicochemical properties of nitrofuratoin anhydrate and monohydrate and their dissolution. Chem Pharm Bull (Tokyo). 1991;39:2667–70.

    Article  CAS  Google Scholar 

  10. Aaltonen J, Heinänen P, Peltonen L, Kortejärvi H, Tanninen VP, Christiansen L, Hirvonen J, Yliruusi J, Rantanen J. In situ measurement of solvent-mediated phase transformations during dissolution testing. J Pharm Sci. 2006;95:2730–7.

    Article  CAS  PubMed  Google Scholar 

  11. Wadher KJ, Bajaj GS, Trivedi RV, Trivedi SS, Umekar MJ. Investigation of the influence of cellulose polymer on solid phase transformation of carbamazepine. J Cryst Growth. 2021;575: 126358.

    Article  CAS  Google Scholar 

  12. Wikström H, Rantanen J, Gift AD, Taylor LS. Toward an understanding of the factors influencing anhydrate-to-hydrate transformation kinetics in aqueous environments. Cryst Growth Des. 2008;8:2684–93.

    Article  Google Scholar 

  13. Greco K, Bogner R. Solution-mediated phase transformation: significance during dissolution and implications for bioavailability. J Pharm Sci. 2012;101:2996–3018.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Wang N, Wang C, Ma Y, Huang X, Wang T, Hao H. Mechanism and regulation strategy of solution-mediated polymorphic transformation: a case of 5-Nitrofurazone. Ind Eng Chem Res. 2021;60:2337–47.

    Article  CAS  Google Scholar 

  15. Gift AD, Luner PE, Luedeman L, Taylor LS. Influence of polymeric excipients on crystal hydrate formation kinetics in aqueous slurries. J Pharm Sci. 2008;97:5198–211.

    Article  CAS  PubMed  Google Scholar 

  16. Qu H, Louhi-Kultanen M, Kallas J. Additive effects on the solvent-mediated anhydrate/hydrate phase transformation in a mixed solvent. Cryst Growth Des. 2007;7:724–9.

    Article  CAS  Google Scholar 

  17. Airaksinen S, Luukkonen P, Jørgensen A, Karjalainen M, Rantanen J, Yliruusi J. Effects of excipients on hydrate formation in wet masses containing theophylline. J Pharm Sci. 2003;92:516–28.

    Article  CAS  PubMed  Google Scholar 

  18. Wikström H, Carroll WJ, Taylor LS. Manipulating theophylline monohydrate formation during high-shear wet granulation through improved understanding of the role of pharmaceutical excipients. Pharm Res. 2008;25:923–35.

    Article  PubMed  Google Scholar 

  19. Otsuka M, Ohfusa T, Matsuda Y. Effect of binders on polymorphic transformation kinetics of carbamazepine in aqueous solution. Colloids Surf B. 2000;17:145–152.

  20. Kirchmeyer W, Wyttenbach N, Alsenz J, Kuentz M. Influence of excipients on solvent-mediated hydrate formation of piroxicam studied by dynamic imaging and fractal analysis. Cryst Growth Des. 2015;15:5002–10.

    Article  CAS  Google Scholar 

  21. Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Effect of binary additive combinations on solution crystal growth of the poorly water-soluble drug. Ritonavir Cryst Growth Des. 2012;12:6050–60.

    Article  CAS  Google Scholar 

  22. Liu Y, Yu T, Lai W, Ma Y, Kang Y, Ge Z. Adsorption behavior of acetone solvent at the HMX crystal faces: a molecular dynamics study. J Mol Graph Model. 2017;74:38–43.

    Article  CAS  PubMed  Google Scholar 

  23. Kirubakaran P, Wang K, Rosbottom I, Cross RBM, Li M. Understanding the effects of a polymer on the surface dissolution of pharmaceutical cocrystals using combined experimental and molecular dynamics simulation approaches. Mol Pharm. 2020;17:517–29.

    CAS  PubMed  Google Scholar 

  24. Chen J, Guo M, Fan R, Peng Y, Cai T. Impact of bile salt on solution-mediated phase transformation of pharmaceutical cocrystals: the importance of coformer release kinetics. Chem Eng J. 2022;435: 134928.

    Article  CAS  Google Scholar 

  25. Raijada D, Arnfast L, Bond AD, Aho J, Bøtker J, Sandler N, Rantanen J. Dehydration of nitrofurantoin monohydrate during melt extrusion. Cryst Growth Des. 2017;17:3707–15.

    Article  CAS  Google Scholar 

  26. Xu S, Chen Y, Gong J, Wang J. Interplay between kinetics and thermodynamics on the probability nucleation rate of a urea-water crystallization system. Cryst Growth Des. 2018;18:2305–15.

    Article  CAS  Google Scholar 

  27. Han D, Wang Y, Yang Y, Gong T, Chen Y, Gong J. Revealing the role of a surfactant in the nucleation and crystal growth of thiamine nitrate: experiments and simulation studies. CrystEngComm. 2019;21:3576–85.

    Article  CAS  Google Scholar 

  28. Seyssiecq I, Veesler S, Pèpe G, Boistelle R. The influence of additives on the crystal habit of gibbsite. J Cryst Growth. 1999;196:174–80.

    Article  CAS  Google Scholar 

  29. Tian F, Baldursdottir S, Rantanen J. Effects of polymer additives on the crystallization of hydrates: a molecular-level modulation. Mol Pharm. 2009;6:202–10.

    Article  CAS  PubMed  Google Scholar 

  30. Guo M, Wang K, Hamill N, Lorimer K, Li M. Investigating the influence of polymers on supersaturated flufenamic acid cocrystal solutions. Mol Pharm. 2016;13:3292–307.

    Article  CAS  PubMed  Google Scholar 

  31. Alinda P, Shi K, Li M. Nucleation of supersaturated flufenamic acid cocrystal solutions in the presence of a polymer. Cryst Growth Des. 2022;22:5215–28.

    Article  CAS  Google Scholar 

  32. Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Understanding polymer properties important for crystal growth inhibition—impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst Growth Des. 2012;12:3133–43.

    Article  CAS  Google Scholar 

  33. Kramarenko EY, Winkler RG, Khalatur PG, Khokhlov AR, Reineker P. Molecular dynamics simulation study of adsorption of polymer chains with variable degree of rigidity. I Static properties J CHEM PHYS. 1996;104:4806–13.

    CAS  Google Scholar 

  34. Cavanagh KL, Kuminek G, Rodríguez-Hornedo N. Cocrystal solubility advantage and dose/solubility ratio diagrams: a mechanistic approach to selecting additives and controlling dissolution–supersaturation–precipitation behavior. Mol Pharm. 2020;17:4286–301.

    Article  CAS  PubMed  Google Scholar 

  35. Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO 3rd. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev Ind Pharm. 2008;34:890–902.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support to this work from the National Natural Science Foundation of China (No. 81872813, 22108313, 82273880), Natural Science Foundation of Jiangsu Province (BK 20200576), Fundamental Research Funds for the Central Universities (No 2632022ZD16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Cai or Minshan Guo.

Ethics declarations

Competing Interest

The authors have no conficts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5359 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ji, X., Cai, T. et al. Mechanistic Insight of Polymer Effects on the Kinetic of Solution-Mediated Phase Transformation of Nitrofurantoin Anhydrate to Monohydrate. Pharm Res 40, 1587–1598 (2023). https://doi.org/10.1007/s11095-023-03513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03513-0

Keywords

Navigation