Skip to main content
Log in

Drug Release from Surfactant-Containing Amorphous Solid Dispersions: Mechanism and Role of Surfactant in Release Enhancement

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To understand how surfactants affect drug release from ternary amorphous solid dispersions (ASDs), and to investigate different mechanisms of release enhancement.

Methods

Ternary ASDs containing ritonavir (RTV), polyvinylpyrrolidone/vinyl acetate (PVPVA) and a surfactant (sodium dodecyl sulfate (SDS), Tween 80, Span 20 or Span 85) were prepared with rotary evaporation. Release profiles of ternary ASDs were measured with surface normalized dissolution. Phase separation morphologies of ASD compacts during hydration/dissolution were examined in real-time with a newly developed confocal fluorescence microscopy method. The water ingress rate of different formulations was measured with dynamic vapor sorption. Microscopy was employed to check for matrix crystallization during release studies.

Results

All surfactants improved drug release at 30% DL, while only SDS and Tween 80 improved drug release at higher DLs, although SDS promoted matrix crystallization. The dissolution rate of neat polymer increased when SDS and Tween 80 were present. The water ingress rate also increased in the presence of all surfactants. Surfactant-incorporation affected both the kinetic and thermodynamics factors governing phase separation of RTV-PVPVA-water system, modifying the phase morphology during ASD dissolution. Importantly, SDS increased the miscibility of RTV-PVPVA-water system, whereas other surfactants mainly affected the phase separation kinetics/drug-rich barrier persistence.

Conclusion

Incorporation of surfactants enhanced drug release from RTV-PVPVA ASDs compared to the binary system. Increased drug-polymer-water miscibility and disruption of the drug-rich barrier at the gel-solvent interface via plasticization are highlighted as two key mechanisms underlying surfactant impacts based on direct visualization of the phase separation process upon hydration and release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Abbreviations

AAPS:

Amorphous-amorphous phase separation

ASD:

Amorphous solid dispersions

ATR-FTIR:

Attenuated total reflectance—Fourier transform infrared

DCM:

Dichloromethane

DL:

Drug loading

DSC:

Differential scanning calorimetry

DVS:

Dynamic vapor sorption

HLB:

Hydrophilic-lipophilic balance

HPLC:

High-performance liquid chromatography

HPMCAS:

Hydroxypropyl methylcellulose acetate succinate

HPMCP:

Hydroxypropyl methylcellulose phthalate

HTS:

High throughput screening

IDR:

Intrinsic dissolution apparatus

LoC:

Limit of congruency

PE:

Pass energies

PLM:

Polarized light microscopy

PVPVA:

Polyvinylpyrrolidone/vinyl acetate

RTV:

Ritonavir

RH:

Relative humidity

SEM:

Scanning electron microscope

SDS:

Sodium dodecyl sulfate

SL:

Surfactant level

Span 20:

Sorbitan monolaurate

Span 85:

Sorbitan trioleate

T g :

Glass transition temperature

THF:

Tetrahydrofuran

TPGS:

Tocopherol polyethylene glycol succinate

Tween 80:

Polyoxyethylene sorbitan monooleate

UV:

Ultraviolet

XPS:

X-ray photoelectron spectroscopy

References

  1. Wildey MJ, Haunso A, Tudor M, Webb M, Connick JH. High-throughput screening. In: Platform Technologies in Drug Discovery and Validation. 2017;50:149–95.

  2. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.

    Article  PubMed  Google Scholar 

  3. Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharmaceutica Sinica B. 2014;4(1):18–25.

    Article  PubMed  Google Scholar 

  4. Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the dissolution mechanism of ritonavir-copovidone amorphous solid dispersions: Importance of congruent release for enhanced performance. Mol Pharm. 2019;16(3):1327–39.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, Hussain M, Haskell R, Stefanski K, Qian F. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction. Pharm Res. 2016;33(10):2445–58.

    Article  PubMed  Google Scholar 

  6. Tho I, Liepold B, Rosenberg J, Maegerlein M, Brandl M, Fricker G. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur J Pharm Sci. 2010;40(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  7. McGovern SL, Helfand BT, Feng B, Shoichet BK. A specific mechanism of nonspecific inhibition. J Med Chem. 2003;46(20):4265–72.

    Article  CAS  PubMed  Google Scholar 

  8. Indulkar AS, Gao Y, Raina SA, Zhang GG, Taylor LS. Exploiting the phenomenon of liquid-liquid phase separation for enhanced and sustained membrane transport of a poorly water-soluble drug. Mol Pharm. 2016;13(6):2059–69.

    Article  CAS  PubMed  Google Scholar 

  9. Stewart AM, Grass ME, Brodeur TJ, Goodwin AK, Morgen MM, Friesen DT, Vodak DT. Impact of drug-rich colloids of itraconazole and hpmcas on membrane flux in vitro and oral bioavailability in rats. Mol Pharm. 2017;14(7):2437–49.

    Article  CAS  PubMed  Google Scholar 

  10. Kesisoglou F, Wang M, Galipeau K, Harmon P, Okoh G, Xu W. Effect of amorphous nanoparticle size on bioavailability of anacetrapib in dogs. J Pharm Sci. 2019;108(9):2917–25.

    Article  CAS  PubMed  Google Scholar 

  11. Frenkel YV, Clark AD Jr, Das K, Wang YH, Lewi PJ, Janssen PA, Arnold E. Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J Med Chem. 2005;48(6):1974–83.

    Article  CAS  PubMed  Google Scholar 

  12. Yang R, Mann AKP, Van Duong T, Ormes JD, Okoh GA, Hermans A, Taylor LS. Drug Release and Nanodroplet Formation from Amorphous Solid Dispersions: Insight into the Roles of Drug Physicochemical Properties and Polymer Selection. Mol Pharm. 2021;18(5):2066–81.

    Article  CAS  PubMed  Google Scholar 

  13. Hiew TN, Zemlyanov DY, Taylor LS. Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug-Polymer Interactions. Mol Pharm. 2022;19(2):392–413.

    Article  CAS  PubMed  Google Scholar 

  14. Purohit HS, Taylor LS. Phase behavior of ritonavir amorphous solid dispersions during hydration and dissolution. Pharm Res. 2017;34(12):2842–61.

    Article  CAS  PubMed  Google Scholar 

  15. Li N, Taylor LS. Microstructure formation for improved dissolution performance of lopinavir amorphous solid dispersions. Mol Pharm. 2019;16(4):1751–65.

    Article  CAS  PubMed  Google Scholar 

  16. Han YR, Ma Y, Lee PI. Impact of phase separation morphology on release mechanism of amorphous solid dispersions. Eur J Pharm Sci. 2019;136: 104955.

    Article  CAS  PubMed  Google Scholar 

  17. Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Release mechanisms of amorphous solid dispersions: role of drug-polymer phase separation and morphology. J Pharm Sci. 2023;112(1):304–17.

    Article  CAS  PubMed  Google Scholar 

  18. Farrell B, French Merkley V, Ingar N. Reducing pill burden and helping with medication awareness to improve adherence. Can Pharm J (Ott). 2013;146(5):262–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. An J, Lee JS, Sharpsten L, Wilson AK, Cao F, Tran JN. Impact of pill burden on adherence to hepatitis C medication. Curr Med Res Opin. 2019;35(11):1937–44.

    Article  PubMed  Google Scholar 

  20. Meng F, Ferreira R, Zhang F. Effect of surfactant level on properties of celecoxib amorphous solid dispersions. J Drug Deliv Sci Technol. 2019;49:301–7.

    Article  CAS  Google Scholar 

  21. Feng D, Peng T, Huang Z, Singh V, Shi Y, Wen T, Lu M, Quan G, Pan X, Wu C. Polymer(-)Surfactant System Based Amorphous Solid Dispersion: Precipitation Inhibition and Bioavailability Enhancement of Itraconazole. Pharma. 2018;10(2):53.

    Google Scholar 

  22. Tung NT, Tran CS, Nguyen TL, Pham TM, Chi SC, Nguyen HA, Bui QD, Bui DN, Tran TQ. Effect of surfactant on the in vitro dissolution and the oral bioavailability of a weakly basic drug from an amorphous solid dispersion. Eur J Pharm Sci. 2021;162.

  23. Correa-Soto CE, Gao Y, Indulkar AS, Zhang GGZ, Taylor LS. Role of Surfactants in Improving Release from Higher Drug Loading Amorphous Solid Dispersions. Int J Pharm. 2022:122120.

  24. Correa Soto CE, Gao Y, Indulkar AS, Ueda K, Zhang GGZ, Taylor LS. Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets. Pharm Res. 2022;39(1):167–88.

    Article  CAS  PubMed  Google Scholar 

  25. Schittny A, Philipp-Bauer S, Detampel P, Huwyler J, Puchkov M. Mechanistic insights into effect of surfactants on oral bioavailability of amorphous solid dispersions. J Control Release. 2020;320:214–25.

    Article  CAS  PubMed  Google Scholar 

  26. Jermain SV, Brough C, Williams RO 3rd. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery - An update. Int J Pharm. 2018;535(1–2):379–92.

    Article  CAS  PubMed  Google Scholar 

  27. Saboo S, Bapat P, Moseson DE, Kestur US, Taylor LS. Exploring the role of surfactants in enhancing drug release from amorphous solid dispersions at higher drug loadings. Pharm. 2021;13(5):735.

  28. Que C, Lou X, Zemlyanov DY, Mo H, Indulkar AS, Gao Y, Zhang GGZ, Taylor LS. Insights into the dissolution behavior of ledipasvir-copovidone amorphous solid dispersions: Role of drug loading and intermolecular interactions. Mol Pharm. 2019;16(12):5054–67.

    Article  CAS  PubMed  Google Scholar 

  29. Harmon P, Galipeau K, Xu W, Brown C, Wuelfing WP. Mechanism of dissolution-induced nanoparticle formation from a copovidone-based amorphous solid dispersion. Mol Pharm. 2016;13(5):1467–81.

    Article  CAS  PubMed  Google Scholar 

  30. Solanki NG, Lam K, Tahsin M, Gumaste SG, Shah AV, Serajuddin ATM. Effects of surfactants on Itraconazole-HPMCAS solid dispersion prepared by hot-melt extrusion I: Miscibility and drug release. J Pharm Sci. 2019;108(4):1453–65.

    Article  CAS  PubMed  Google Scholar 

  31. Dave RH, Patel AD, Donahue E, Patel HH. To evaluate the effect of addition of an anionic surfactant on solid dispersion using model drug indomethacin. Drug Dev Ind Pharm. 2012;38(8):930–9.

    Article  CAS  PubMed  Google Scholar 

  32. Dave RH, Patel HH, Donahue E, Patel AD. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole. Drug Dev Ind Pharm. 2013;39(10):1562–72.

    Article  CAS  PubMed  Google Scholar 

  33. Vinarov Z, Katev V, Radeva D, Tcholakova S, Denkov ND. Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure. Drug Dev Ind Pharm. 2018;44(4):677–86.

    Article  CAS  PubMed  Google Scholar 

  34. Balakrishnan A, Rege BD, Amidon GL, Polli JE. Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity. J Pharm Sci. 2004;93(8):2064–75.

    Article  CAS  PubMed  Google Scholar 

  35. Jay P, Lakshman YC, Kowalski James, Serajuddin Abu T. M. Application of Melt Extrusion in the Development of a Physically and Chemically Stable High-Energy Amorphous Solid Dispersion of a Poorly Water-Soluble Drug. Mol Pharm. 2008;5(6):994–1002.

    Article  Google Scholar 

  36. Luner PE, Babu SR, Mehta SC. Wettability of a hydrophobic drug by surfactant solutions. Int J Pharm. 1996;128(1–2):29–44.

    Article  CAS  Google Scholar 

  37. Rahman M, Ahmad S, Tarabokija J, Bilgili E. Roles of surfactant and polymer in drug release from spray-dried hybrid nanocrystal-amorphous solid dispersions (HyNASDs). Powder Technol. 2020;361:663–78.

    Article  CAS  Google Scholar 

  38. Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Deliv Sci Technol. 2017;41:68–77.

    Article  CAS  Google Scholar 

  39. Yang R, Zhang GGZ, Kjoller K, Dillon E, Purohit HS, Taylor LS. Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Int J Pharm. 2022;619: 121708.

    Article  CAS  PubMed  Google Scholar 

  40. Kapourani A, Tzakri T, Valkanioti V, Kontogiannopoulos KN, Barmpalexis P. Drug crystal growth in ternary amorphous solid dispersions: Effect of surfactants and polymeric matrix-carriers. Int J Pharm X. 2021;3: 100086.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Baghel S, Cathcart H, O’Reilly NJ. Investigation into the Solid-State Properties and Dissolution Profile of Spray-Dried Ternary Amorphous Solid Dispersions: A Rational Step toward the Design and Development of a Multicomponent Amorphous System. Mol Pharm. 2018;15(9):3796–812.

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Dong B, Wang J, Li J, Shen T, Peng H, Ling X. Synthesis and characterization of mixed alkanes microcapsules with phase change temperature below ice point for cryogenic thermal energy storage. Energy. 2019;187:115898

  43. Dinarvand R, Moghadam SH, Sheikhi A, Atyabi F. Effect of surfactant HLB and different formulation variables on the properties of poly-D, L-lactide microspheres of naltrexone prepared by double emulsion technique. J Microencapsul. 2005;22(2):139–51.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshioka T, Sternberg B, Florence A. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm. 1994;105(1):1–6.

    Article  CAS  Google Scholar 

  45. Fowler SD, Greenspan P. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J Histochem Cytochem. 1985;33(8):833–6.

    Article  CAS  PubMed  Google Scholar 

  46. Horst R, Wolf BA. Phase diagrams calculated for quaternary polymer blends. J Chem Phys. 1995;103(9):3782–7.

    Article  CAS  Google Scholar 

  47. Griffiths RB. Thermodynamic model for tricritical points in ternary and quaternary fluid mixtures. J Chem Phys. 1974;60(1):195–206.

    Article  CAS  Google Scholar 

  48. Bellocq A-M, Biais J, Clin B, Gelot A, Lalanne P, Lemanceau B. Three—dimensional phase diagram of the brine-toluene-butanol-sodium dodecyl sulfate system. J Colloid Interface Sci. 1980;74(2):311–21.

    Article  CAS  Google Scholar 

  49. Papanu JS, Soane DS, Bell AT, Hess DW. Transport models for swelling and dissolution of thin polymer films. J Appl Polym Sci. 1989;38(5):859–85.

    Article  CAS  Google Scholar 

  50. Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technol Today. 2000;3(6):198–204.

    Article  CAS  PubMed  Google Scholar 

  51. Yu J, Li Y, Yao X, Que C, Huang L, Hui HW, Gong Y, Qian F, Yu L. Surface Enrichment of Surfactants in Amorphous Drugs: An X-ray Photoelectron Spectroscopy Study. Mol Pharm. 2022;19(2):654–60.

    Article  CAS  PubMed  Google Scholar 

  52. Turner SF, Clarke SM, Rennie AR, Thirtle PN, Cooke DJ, Li ZX, Thomas RK. Adsorption of Sodium Dodecyl Sulfate to a Polystyrene/Water Interface Studied by Neutron Reflection and Attenuated Total Reflection Infrared Spectroscopy. Langmuir. 1999;15(4):1017–23.

    Article  CAS  Google Scholar 

  53. Knock MM, Sanii LS. Effect of hydrophobization of gold QCM-D crystals on surfactant adsorption at the solid-liquid interface. Amphiphiles: molecular assembly and applications. Am Chemical Soc. 1070:175–192.

  54. Dominguez H. Self-aggregation of the SDS surfactant at a solid-liquid interface. J Phys Chem B. 2007;111(16):4054–9.

    Article  CAS  PubMed  Google Scholar 

  55. Oswald S. X-Ray Photoelectron Spectroscopy in Analysis of Surfaces. In. Encycl Anal Chem. 2013.

  56. Tiernan H, Byrne B, Kazarian SG. ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals. Spectrochim Acta A Mol Biomol Spectrosc. 2020;241: 118636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luebbert C, Wessner M, Sadowski G. Mutual Impact of Phase Separation/Crystallization and Water Sorption in Amorphous Solid Dispersions. Mol Pharm. 2018;15(2):669–78.

    Article  CAS  PubMed  Google Scholar 

  58. Prudic A, Ji Y, Luebbert C, Sadowski G. Influence of humidity on the phase behavior of API/polymer formulations. Eur J Pharm Biopharm. 2015;94:352–62.

    Article  CAS  PubMed  Google Scholar 

  59. Krummnow A, Danzer A, Voges K, Dohrn S, Kyeremateng SO, Degenhardt M, Sadowski G. Explaining the Release Mechanism of Ritonavir/PVPVA Amorphous Solid Dispersions. Pharm. 2022;14(9):1904.

    CAS  Google Scholar 

  60. Deac A, Qi Q, Indulkar AS, Purohit HS, Gao Y, Zhang GGZ, Taylor LS. Dissolution Mechanisms of Amorphous Solid Dispersions: Role of Drug Load and Molecular Interactions. Mol Pharm. 2023;20(1):722–37.

    Article  CAS  PubMed  Google Scholar 

  61. Strathmann H, Kock K. The formation mechanism of phase inversion membranes. Desalination. 1977;21(3):241–55.

    Article  CAS  Google Scholar 

  62. Tsai H. Effect of surfactant addition on the morphology and pervaporation performance of asymmetric polysulfone membranes. J Membr Sci. 2000;176(1):97–103.

    Article  CAS  Google Scholar 

  63. Wang D-M, Lin F-C, Wu T-T, Lai J-Y. Formation mechanism of the macrovoids induced by surfactant additives. J Membr Sci. 1998;142(2):191–204.

    Article  CAS  Google Scholar 

  64. Fung-Ching L, Da-Ming Wang, Cheng-Lee Lai, Juin-Yih Lai. Effect of surfactants on the structure of PMMA membranes. J Membrane Sci. 1997;123(2):281–91.

    Article  Google Scholar 

  65. Saedi S, Madaeni SS, ArabiShamsabadi A, Mottaghi F. The effect of surfactants on the structure and performance of PES membrane for separation of carbon dioxide from methane. Sep Purif Technol. 2012;99:104–19.

    Article  CAS  Google Scholar 

  66. Encina GG, Sanghvi SP, Nairn JG. Phase diagram studies of microcapsule formation using hydroxypropyl methylcellulose phthalate. Drug Dev Ind Pharm. 2008;18(5):561–79.

    Article  Google Scholar 

  67. Ariyaprakai S, Dungan SR. Influence of surfactant structure on the contribution of micelles to Ostwald ripening in oil-in-water emulsions. J Colloid Interface Sci. 2010;343(1):102–8.

    Article  CAS  PubMed  Google Scholar 

  68. Weiss J, Canceliere C, McClements DJ. Mass Transport Phenomena in Oil-in-Water Emulsions Containing Surfactant Micelles: Ostwald Ripening. Langmuir. 2000;16(17):6833–8.

    Article  CAS  Google Scholar 

  69. Dalvi SV, Dave RN. Controlling Particle Size of a Poorly Water-Soluble Drug Using Ultrasound and Stabilizers in Antisolvent Precipitation. Ind Eng Chem Res. 2009;48(16):7581–93.

    Article  CAS  Google Scholar 

  70. Cerdeira AM, Mazzotti M, Gander B. Miconazole nanosuspensions: Influence of formulation variables on particle size reduction and physical stability. Int J Pharm. 2010;396(1–2):210–8.

    Article  CAS  PubMed  Google Scholar 

  71. Saboo S, Kestur US, Flaherty DP, Taylor LS. Congruent release of drug and polymer from amorphous solid dispersions: Insights into the role of drug-polymer hydrogen bonding, surface crystallization, and glass transition. Mol Pharm. 2020;17(4):1261–75.

    Article  CAS  PubMed  Google Scholar 

  72. Ouano AC. Dissolution kinetics of polymers: effect of residual solvent content. Macromolecular Solutions. 1982:208–17.

  73. Cooper WJ, Krasicky PD, Rodriguez F. Effects of molecular weight and plasticization on dissolution rates of thin polymer films. Polymer. 1985;26(7):1069–72.

    Article  CAS  Google Scholar 

  74. Cooper WJ, Krasicky PD, Rodriguez F. Dissolution rates of poly(methyl methacrylate) films in mixed solvents. J Appl Polym Sci. 1986;31(1):65–73.

    Article  CAS  Google Scholar 

  75. Sarti GC, Gostoli C, Riccioli G, Carbonell RG. Transport of swelling penetrants in glassy polymers: Influence of convection. J Appl Polym Sci. 1986;32(2):3627–47.

    Article  CAS  Google Scholar 

  76. Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, Wu G, Qian F. Improving Oral Bioavailability of Sorafenib by Optimizing the “Spring” and “Parachute” Based on Molecular Interaction Mechanisms. Mol Pharm. 2016;13(2):599–608.

    Article  CAS  PubMed  Google Scholar 

  77. Bury R, Desmazières B, Treiner C. Interactions between poly(vinylpyrrolidone) and ionic surfactants at various solid/water interfaces: a calorimetric investigation. Colloids Surf, A. 1997;127(1–3):113–24.

    Article  CAS  Google Scholar 

  78. Holmberg C, Nilsson S, Sundelöf L-O. Thermodynamic Properties of Surfactant/Polymer/Water Systems with Respect to Clustering Adsorption and Intermolecular Interaction as a Function of Temperature and Polymer Concentration. Langmuir. 1997;13(6):1392–9.

    Article  CAS  Google Scholar 

  79. Nilsson S. Interactions between Water-Soluble Cellulose Derivatives and Surfactants. 1. The HPMC/SDS/Water System. Macromol. 2002;28(23):7837–44.

    Article  Google Scholar 

  80. Qi S, Roser S, Edler KJ, Pigliacelli C, Rogerson M, Weuts I, Van Dycke F, Stokbroekx S. Insights into the role of polymer-surfactant complexes in drug solubilisation/stabilisation during drug release from solid dispersions. Pharm Res. 2013;30(1):290–302.

    Article  PubMed  Google Scholar 

  81. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: stability testing of selected solid dispersions. Pharm Res. 2006;23(8):1928–36.

    Article  CAS  PubMed  Google Scholar 

  82. Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Role of Surfactants on Release Performance of Amorphous Solid Dispersions of Ritonavir and Copovidone. Pharm Res. 2022;39(2):381–94.

    Article  CAS  PubMed  Google Scholar 

  83. Canselier JP. The effects of surfactants on crystallization phenomena. J Dispersion Sci Technol. 2007;14(6):625–44.

    Article  Google Scholar 

  84. Bujan M, Sikirić M, Filipović-Vinceković N, Vdović N, Garti N, Füredi-Milhofer H. Effect of Anionic Surfactants on Crystal Growth of Calcium Hydrogen Phosphate Dihydrate. Langmuir. 2001;17(21):6461–70.

    Article  CAS  Google Scholar 

  85. Li Y, Yu J, Tan X, Yu L. Surface Mobility of Amorphous Indomethacin Containing Moisture and a Surfactant: A Concentration-Temperature Superposition Principle. Mol Pharm. 2022;19(8):2962–70.

    Article  CAS  PubMed  Google Scholar 

  86. Dugua J, Simon B. Crystallization of sodium perborate from aqueous solutions. J Cryst Growth. 1978;44(3):280–6.

    Article  CAS  Google Scholar 

Download references

Funding

Ruochen Yang would like acknowledge ASTAR, Singapore, for funding. The authors would like to thank AbbVie Inc., for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hitesh S. Purohit or Lynne S. Taylor.

Ethics declarations

Disclosure

AbbVie funded the study and AbbVie and Purdue University jointly participated in study design, research, data collection, analysis and interpretation of data, writing, reviewing, and approving the publication. RY and LST have no additional conflicts of interest to report. HSP, and GGZZ, are employees of AbbVie and may own AbbVie stock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7.80 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Zhang, G.G.Z., Zemlyanov, D.Y. et al. Drug Release from Surfactant-Containing Amorphous Solid Dispersions: Mechanism and Role of Surfactant in Release Enhancement. Pharm Res 40, 2817–2845 (2023). https://doi.org/10.1007/s11095-023-03502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03502-3

Keywords

Navigation