Skip to main content
Log in

Hollow MnO2-Based Nanoprobes for Enhanced Photothermal/Photodynamic /Chemodynamic Co-Therapy of Hepatocellular Carcinoma

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The effect of monotherapy in cancer is frequently influenced by the tumor’s unique hypoxic microenvironment, insufficient drug concentration at the treatment site, and tumour cells’ increased drug tolerance. In this work, we expect to design a novel therapeutic nanoprobe with the ability to solve these problems and improve the efficacy of antitumor therapy.

Methods

We have prepared a hollow manganese dioxide nanoprobes loaded with photosensitive drug IR780 for the photothermal/photodynamic/chemodynamic co-therapy of liver cancer.

Results

The nanoprobe demonstrates efficient thermal transformation ability under a single laser irradiation, and under the synergistic influence of photo heat, accelerates the Fenton/ Fenton-like reaction efficiency based on Mn2+ ions to produce more ·OH under the synergistic effect of photo heat. Moreover, the oxygen released under the degradation of manganese dioxide further promotes the ability of photosensitive drugs to produce singlet oxygen (ROS). The nanoprobe has been found to efficiently destroy tumour cells in vivo and in vitro experiments when used in combination with photothermal/photodynamic/ chemodynamic modes of treatment under laser irradiation.

Conclusion

In all, this research shows that a therapeutic strategy based on this nanoprobe could be a viable alternative for cancer treatment in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Condron CM. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29(4):297–307.

    Article  PubMed  Google Scholar 

  2. Michael; Dean; Tito; Fojo; Susan; Bates. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.

    Article  PubMed  Google Scholar 

  3. Antaris AL, Robinson JT, Yaghi OK, Hong G, Diao S, Luong R, Dai H. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano. 2013;7(4):3644–52.

    Article  CAS  PubMed  Google Scholar 

  4. Xu XL, Chen MX, Lou XF, Du YY, Du YZ. Sialic acid-modified mesoporous polydopamine induces tumor vessel normalization to enhance photodynamic therapy by inhibiting VE-cadherin internalization. Chem Eng J. 2021;414(1): 128743.

    Article  CAS  Google Scholar 

  5. Li Z, Fan J, Tong C, Zhou H, Wang W. A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy. Nanomedicine. 2019;14(15):2011–25.

    Article  CAS  PubMed  Google Scholar 

  6. Feng L, Gai S, He F, Yang P, Zhao Y. Multifunctional Bismuth Ferrite Nanocatalysts with Optical and Magnetic Functions for Ultrasound Enhanced Tumor Theranostics. ACS Nano. 2020;14(6):7245–58.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Miao Q, Pu K. Activatable Polymeric Nanoprobe for Near-Infrared Fluorescence and Photoacoustic Imaging of T Lymphocytes. Angew Chem. 2020;133(11):5986–92.

    Article  Google Scholar 

  8. Yao D, Wang Y, Zou R, Bian K, Wang D. Molecular Engineered Squaraine Nanoprobe for NIR-II/Photoacoustic Imaging and Photothermal Therapy of Metastatic Breast Cancer. ACS Appl Mater Interfaces. 2020;12(4):4276–84.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Tinghui, Yin, Li, Rongqin, Zheng, Chen, Qiu, Kit, S, Lam. Size Modulable Nanoprobe for High-Performance Ultrasound Imaging and Drug Delivery Against Cancer. ACS Nano. 2018;12(4):3449–60.

    Article  Google Scholar 

  10. Haoyu Wang, Yan-YanFu, Xuejun Zhang, ChunshuiYu, Shao-KaiSun. Hyaluronic acid-mediated one-pot facile synthesis of a sensitive and biocompatible Gd2 O3 nanoprobe for MR imaging in vivo. RSC Adv. 2015;5(113):93041–7.

    Article  Google Scholar 

  11. Bouché M, Pühringer M, Iturmendi A, Amirshaghaghi A, Cormode DP. Activatable Hybrid Polyphosphazene-AuNP Nanoprobe for ROS Detection by Bimodal PA/CT Imaging. ACS Appl Mater Interfaces. 2019;11(32):28648–56.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen Y, Cong H, Shen Y, Yu B. Biomedical Application of Manganese Dioxide Nanomaterials. Nanotechnology. 2020;31(20): 202001.

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Zhou Y, Xie W, Liu S, Zhao Q, Huang W. Construction of Smart Manganese Dioxide-Based All-in-One Nanoplatform for Cancer Diagnosis and Therapy. Small Methods. 2020;4:2000566.

    Article  CAS  Google Scholar 

  14. Fan S, Zhang Y, Tan H, Xue C, Cui D. Manganese/Iron-Based Nanoprobes for Photodynamic/Chemotherapy Combination Therapy of Tumor Guided by Multimodal Imaging. Nanoscale. 2021;13(10):5383–99.

    Article  CAS  PubMed  Google Scholar 

  15. Xu KF, Jia HR, Zhu YX, Liu X, Wu FG. Cholesterol-Modified Dendrimers for Constructing a Tumor Microenvironment-Responsive Drug Delivery System. ACS Biomater Sci Eng. 2019;5(11):6072–81.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu W, Dong Z, Fu T, Liu J, Chen Q, Li Y, Zhu R, Xu L, Liu Z. Modulation of Hypoxia in Solid Tumor Microenvironment with MnO2 Nanoparticles to Enhance Photodynamic Therapy. Adv Func Mater. 2016;26(30):5490–8.

    Article  CAS  Google Scholar 

  17. Wang H, Bremner DH, Wu K, Gong X, Zhu LM. Platelet Membrane Biomimetic Bufalin-Loaded Hollow MnO2 Nanoparticles for MRI-Guided Chemo-Chemodynamic Combined Therapy of Cancer. Chem Eng J. 2019;382: 122848.

    Article  Google Scholar 

  18. Xu X, Duan J, Liu Y, Kuang Y, Li C. Multi-stimuli responsive hollow MnO2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomater. 2021;126:445–62.

    Article  CAS  PubMed  Google Scholar 

  19. Manivasagan P, Joe A, Han HW, Thambi T, Jang ES. Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Materials Today Bio. 2022;13(7494): 100197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng Y, Lu H, Yang F, Zhang Y, Dong H. Biodegradable FeWOx Nanoparticles for CT/MR Imaging-Guided Synergistic Photothermal. Photodynamic and Chemodynamic Therapy Nanoscale. 2021;13(5):3049–60.

    CAS  PubMed  Google Scholar 

  21. Geng B, Zhang S, Yang X, Shi W, Li P, Pan D, Shen L. Cu2-xO@TiO2-y Z-scheme heterojunctions for sonodynamic-chemodynamic combined tumor eradication. Chem Eng J. 2022;435: 134777.

    Article  CAS  Google Scholar 

  22. Chen Q, Ma Y, Bai P, Li Q, Li C. Tumor Microenvironment-Responsive Nanococktails for Synergistic Enhancement of Cancer Treatment via Cascade Reactions. ACS Appl Mater Interfaces. 2021;13(4):4861–73.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Shi L, Ye Z, Guan K, Zhang XB. Reactive Oxygen Correlated Chemiluminescent Imaging of Semiconducting Polymer Nanoplatform for Monitoring Chemodynamic Therapy. Nano Lett. 2019;20(1):176–83.

    Article  PubMed  Google Scholar 

  24. Liu Y, Li H, Li S, Zhang X, Xiong J, Jiang F, Liu Y, Jiang P. Chiral Cu 2–x Se Nanoparticles for Enhanced Synergistic Cancer Chemodynamic/Photothermal Therapy in the Second Near-Infrared Biowindow. ACS Appl Mater Interfaces. 2021;13(51):60933–44.

    Article  CAS  PubMed  Google Scholar 

  25. Ma B, Nishina Y, Bianco A. A glutathione responsive nanoplatform made of reduced graphene oxide and MnO2 nanoparticles for photothermal and chemodynamic combined therapy. Carbon. 2021;178(4):783–91.

    Article  CAS  Google Scholar 

  26. Han X, Xu Y, Li Y, Zhao X, Nie G. An Extendable Star-Like Nanoplatform for Functional and Anatomical Imaging-Guided Photothermal Oncotherapy. ACS Nano. 2019;13(4):4379–91.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Meng HM, Song G, Li Z, Zhang XB. Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy. ACS Applied Polymer Materials. 2020;2(10):4258–72.

    Article  CAS  Google Scholar 

  28. Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D. RGD-Conjugated Dendrimer-Modified Gold Nanorods for in Vivo Tumor Targeting and Photothermal Therapy. Mol Pharm. 2010;7(1):94–104.

    Article  CAS  PubMed  Google Scholar 

  29. Yuan Z, Lin C, He Y, Tao B, Chen M, Zhang J, Liu P, Cai K. Near-Infrared Light-Triggered Nitric-Oxide-Enhanced Photodynamic Therapy and Low-Temperature Photothermal Therapy for Biofilm Elimination. ACS Nano. 2020;24(3):3546–62.

    Article  Google Scholar 

  30. Yu Yang, Wenjun Zhu, Ziliang Dong, Yu Chao, Lai Xu. Photothermal Therapy: 1D Coordination Polymer Nanofibers for Low-Temperature Photothermal Therapy (Adv. Mater. 40/2017). Adv Mater. 2017;29(40):1703588.

    Article  Google Scholar 

  31. Qian C, Liang C, Wang C, Liu Z. An Imagable and Photothermal “Abraxane-Like” Nanodrug for Combination Cancer Therapy to Treat Subcutaneous and Metastatic Breast Tumors. Adv Mater. 2015;27(5):903–10.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Department of Science and Technology of Sichuan Province (No. 2021YFSY0038 and 2022NSFSC0680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen You.

Ethics declarations

Conflicts of Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Ye, X., Fu, Y. et al. Hollow MnO2-Based Nanoprobes for Enhanced Photothermal/Photodynamic /Chemodynamic Co-Therapy of Hepatocellular Carcinoma. Pharm Res 40, 1271–1282 (2023). https://doi.org/10.1007/s11095-023-03501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03501-4

Keywords

Navigation