Skip to main content

Advertisement

Log in

Computational Model of In Vivo Corneal Pharmacokinetics and Pharmacodynamics of Topically Administered Ophthalmic Drug Products

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Introduction

Although the eye is directly accessible on the surface of the human body, drug delivery can be extremely challenging due to the presence of multiple protective barriers in eye tissues. Researchers have developed complex formulation strategies to overcome these barriers to ophthalmic drug delivery. Current development strategies rely heavily on in vitro experiments and animal testing to predict human pharmacokinetics (PK) and pharmacodynamics (PD).

Objective

The primary objective of the study was to develop a high-fidelity PK/PD model of the anterior eye for topical application of ophthalmic drug products.

Methods

Here, we present a physiologically-based in silico approach to predicting PK and PD in rabbits after topical administration of ophthalmic products. A first-principles based approach was used to describe timolol dissolution, transport, and distribution, including consideration of ionized transport, following topical instillation of a timolol suspension.

Results

Using literature transport and response parameters, the computational model described well the concentration–time and response-time profiles in rabbit. Comparison of validated rabbit model results and extrapolated human model results demonstrate observable differences in the distribution of timolol at multiple time points.

Conclusion

This modeling framework provides a tool for model-based prediction of PK in eye tissues and PD after topical ophthalmic drug administration to the eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol. 2013;2(2):47–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems–recent advances. Prog Retin Eye Res. 1998;17(1):33–58.

    Article  CAS  PubMed  Google Scholar 

  3. Gulsen D, Chauhan A. Ophthalmic drug delivery through contact lenses. Invest Ophthalmol Vis Sci. 2004;45(7):2342–7.

    Article  PubMed  Google Scholar 

  4. Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics [Internet]. 2018 Feb 27 [cited 2018 Apr 20];10(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874841/.

  5. Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev. 1995;16(1):39–43.

    Article  CAS  Google Scholar 

  6. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Worakul N, Robinson JR. Ocular pharmacokinetics/pharmacodynamics. Eur J Pharm Biopharm. 1997;44(1):71–83.

    Article  CAS  Google Scholar 

  9. Bao Q, Newman B, Wang Y, Choi S, Burgess DJ. In vitro and ex vivo correlation of drug release from ophthalmic ointments. J Control Release Off J Control Release Soc. 2018;28(276):93–101.

    Article  Google Scholar 

  10. Prantil-Baun R, Novak R, Das D, Somayaji MR, Przekwas A, Ingber DE. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips. Annu Rev Pharmacol Toxicol. 2018;58(1):37–64.

    Article  CAS  PubMed  Google Scholar 

  11. Shen J, Burgess DJ. In vitro-in vivo correlation for complex non-oral drug products: Where do we stand? J Control Release Off J Control Release Soc. 2015;10(219):644–51.

    Article  Google Scholar 

  12. Somayaji MR, Das D, Przekwas A. A new level a type IVIVC for the rational design of clinical trials toward regulatory approval of generic polymeric long-acting injectables. Clin Pharmacokinet. 2016;55(10):1179–90.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Zheng N, Lionberger RA, Yu LX. Innovative approaches for demonstration of bioequivalence: the US FDA perspective. Ther Deliv. 2013;4(6):725–40.

    Article  CAS  PubMed  Google Scholar 

  14. Balachandran RK, Barocas VH. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm Res. 2008;25(11):2685–96.

    Article  CAS  PubMed  Google Scholar 

  15. Kavousanakis ME, Kalogeropoulos NG, Hatziavramidis DT. Computational modeling of drug delivery to the posterior eye. Chem Eng Sci. 2014;28(108):203–12.

    Article  Google Scholar 

  16. Kotha S, Murtomäki L. Virtual pharmacokinetic model of human eye. Math Biosci. 2014;1(253):11–8.

    Article  Google Scholar 

  17. Loke CY, Ooi EH, Salahudeen MS, Ramli N, Samsudin A. Segmental aqueous humour outflow and eye orientation have strong influence on ocular drug delivery. Appl Math Model. 2018;1(57):474–91.

    Article  Google Scholar 

  18. Oh C, Saville BA, Cheng YL, Rootman DS. A compartmental model for the ocular pharmacokinetics of cyclosporine in rabbits. Pharm Res. 1995;12(3):433–7.

    Article  CAS  PubMed  Google Scholar 

  19. Park J, Bungay PM, Lutz RJ, Augsburger JJ, Millard RW, Sinha Roy A, et al. Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release Off J Control Release Soc. 2005;105(3):279–95.

    Article  CAS  Google Scholar 

  20. Pinsky PM. Three-dimensional modeling of metabolic species transport in the cornea with a hydrogel intrastromal inlay. Invest Ophthalmol Vis Sci. 2014 Apr 8.

  21. Shikamura Y, Ohtori A, Tojo K. Drug penetration of the posterior eye tissues after topical instillation: in vivo and in silico simulation. Chem Pharm Bull (Tokyo). 2011;59(10):1263–7.

    Article  CAS  PubMed  Google Scholar 

  22. Tojo K. A pharmacokinetic model for ocular drug delivery. Chem Pharm Bull (Tokyo). 2004;52(11):1290–4.

    Article  CAS  PubMed  Google Scholar 

  23. Avtar R, Tandon D. Modeling the drug transport in the anterior segment of the eye. Eur J Pharm Sci. 2008;35(3):175–82.

    Article  CAS  PubMed  Google Scholar 

  24. Deng F, Ranta VP, Kidron H, Urtti A. General pharmacokinetic model for topically administered ocular drug dosage forms. Pharm Res. 2016;33(11):2680–90.

    Article  CAS  PubMed  Google Scholar 

  25. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–88.

    Article  CAS  PubMed  Google Scholar 

  26. Pak J, Chen ZJ, Sun K, Przekwas A, Walenga R, Fan J. Computational modeling of drug transport across the in vitro cornea. Comput Biol Med. 2018;1(92):139–46.

    Article  Google Scholar 

  27. Kannan R, Chen ZJ, Singh N, Przekwas A, Delvadia R, Tian G, et al. A quasi-3D wire approach to model pulmonary airflow in human airways. Int J Numer Methods Biomed Eng. 2017 Jul;33(7).

  28. Przekwas A, Friend T, Teixeira R, Chen ZJ, Wilkerson P. Spatial modeling tools for cell biology [Internet]. CFD RESEARCH CORP HUNTSVILLE AL, CFD RESEARCH CORP HUNTSVILLE AL; 2006 Oct [cited 2018 May 3]. Available from: http://www.dtic.mil/docs/citations/ADA460852.

  29. Kinsey VE, Reddy DVN. Chemistry and dynamics of aqueous humour. In: Prince JH, editor. The Rabbit Eye in Research. C.C. Thomas, Springfield; 1964. p. 218–319.

  30. Patton NM. The biology of the laboratory rabbit. The Biology of the Laboratory Rabbit. 1994. 27–45 p.

  31. Gupta C, Chauhan A, Mutharasan R, Srinivas SP. Measurement and modeling of diffusion kinetics of a lipophilic molecule across rabbit cornea. Pharm Res. 2010;27(4):699–711.

    Article  CAS  PubMed  Google Scholar 

  32. Missel PJ. Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm Res. 2012;29(12):3251–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brubaker RF, Nagataki S, Townsend DJ, Burns RR, Higgins RG, Wentworth W. The effect of age on aqueous humor formation in man. Ophthalmology. 1981;88(3):283–8.

    Article  CAS  PubMed  Google Scholar 

  34. Struble C, Howard S, Relph J. Comparison of ocular tissue weights ( volumes ) and tissue collection techniques in commonly used preclinical animal species mean male and female. 2014;2014.

  35. Sawada T, Nakamura J, Nishida Y, Kani K, Morikawa S, Inubushi T. Magnetic resonance imaging studies of the volume of the rabbit eye with intravenous mannitol. 2002;25(3):173–7.

    Google Scholar 

  36. Ahmed I, Francoeur ML, Thombre AG, Patton TF. The Kinetics of Timolol in the Rabbit Lens: Implications for Ocular Drug Delivery. Pharm Res Off J Am Assoc Pharm Sci. 1989;6(9):772–8.

    CAS  Google Scholar 

  37. Zhang W, Prausnitz MR, Edwards AAA. Model of transient drug diffusion across cornea. J Control Release Off J Control Release Soc. 2004;99(2):241–58.

    Article  CAS  Google Scholar 

  38. Francoeur ML, Sitek SJ, Costello B, Patton TF. Kinetic disposition and distribution of timolol in the rabbit eye. A physiologically based ocular model. Int J Pharm. 1985;25(3):275–92.

  39. Henriksson JT, De Paiva C, Farley W, Pflugfelder S, Burns A, Bergmanson J. Morphologic alterations of the palpebral conjunctival epithelium in a dry eye model. Cornea. 2013;32(4):483–90.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang X, Li Q, Xiang M, Zou H, Liu B, Zhou H, et al. Bulbar Conjunctival Thickness Measurements With Optical Coherence Tomography in Healthy Chinese Subjects. Invest Ophthalmol Vis Sci. 2013;54:4705–9.

    Article  PubMed  Google Scholar 

  41. Narayanaswamy A, Zheng C, Perera SA, Htoon HM, Friedman DS, Tun TA, et al. Variations in iris volume with physiologic mydriasis in subtypes of primary angle closure glaucoma. Invest Ophthalmol Vis Sci. 2013;54(1):708–13.

    Article  PubMed  Google Scholar 

  42. Baurmann M. Über die Entstehung von Scleralausbuchtungen unter dem Sehnerveneintritt an Kolobomaugen. Albrecht Von Graefes Arch Für Ophthalmol. 1923;112(3–4):495–505.

    Article  Google Scholar 

  43. Chrai SS, Patton TF, Mehta A, Robinsonx JR. Lacrimal and Instilled Fluid Dynamics in Rabbit Eyes. J Pharm Sci. 1973;67(7):1112–21.

    Article  Google Scholar 

  44. Avtar R, Tandon D. Mathematical Modelling of Intraretinal Oxygen Partial Pressure. Trop J Pharm Res. 2008;7(4):1107–16.

    Article  Google Scholar 

  45. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: A literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–88.

    Article  CAS  PubMed  Google Scholar 

  46. Vareilles P, Silverstone D, Plazonnet B, Le Douarec JC, Sears ML, Stone CA. Comparison of the effects of timolol and other adrenergic agents on intraocular pressure in the rabbit. Invest Ophthalmol Vis Sci. 1977;16(11):987–96.

    CAS  PubMed  Google Scholar 

  47. Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of β-blocking agents: II - assessment of barrier contributions. J Pharm Sci. 1983;72(11):1272–9.

    Article  CAS  PubMed  Google Scholar 

  48. Sakanaka K, Kawazu K, Tomonari M, Kitahara T, Nakashima M, Nishida K, et al. Ocular pharmacokinetic/pharmacodynamic modeling for timolol in rabbits using a telemetry system. Biol Pharm Bull. 2008;31(5):970–5.

    Article  CAS  PubMed  Google Scholar 

  49. Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sonntag JR, Brindley GO, Shields MB. Effect of timolol therapy on outflow facility. Invest Ophthalmol Vis Sci. 1978;17(3):293–6.

    CAS  PubMed  Google Scholar 

  51. Coakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure: in the normal eye. Arch Ophthalmol. 1978;96(11):2045–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kinsey V, Reddy D. Chemistry and dynamics of aqueous humor. in: the rabbit in eye research. Springfield, IL: CC Thomas; 1964. p. 218–319. (Chemistry and dynamics of aqueous humor).

  53. Ahmed I, Patton TF. Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm. 1987;38(1):9–21.

    Article  CAS  Google Scholar 

  54. Adams BM, Ebeida MS, Eldred MS, Jakeman JD, Swiler LP, Stephens JA, et al. DAKOTA, A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.3 User’s Manual. Sandia Technical Report SAND2014–4633; 2015.

  55. Lee VHL, Luo AM, Li S, Podder SK, Chang JSC, Ohdo S, et al. Pharmacokinetic basis for nonadditivity of intraocular pressure lowering in timolol combinations. Invest Ophthalmol Vis Sci. 1991;32(11):2948–57.

    CAS  PubMed  Google Scholar 

  56. Ahmed I, Patton TF. Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm. 1987;38(1–3):9–21.

    Article  CAS  Google Scholar 

  57. Gwon A, Tsonis P, Gwon A. Animal Models in Eye Research. 1st ed. Animal models in eye research. San Diego, Ca: Elsevier; 2008. 184–204 p.

  58. Narayanaswamy A, Zheng C, Perera SA, Htoon HM, Friedman DS, Tun TA, et al. Variations in iris volume with physiologic mydriasis in subtypes of primary angle closure glaucoma. Invest Ophthalmol Vis Sci. 2013;54(1):708–13.

    Article  PubMed  Google Scholar 

  59. Struble C, Howard S, Relph J. Comparison of ocular tissue weights (volumes) and tissue collection techniques in commonly used preclinical animal species. Acta Ophthalmol (Copenh). 2014 Aug 20;92(s253):0–0.

Download references

Acknowledgements

We would like to thank Dr. Kay Sun and Mr. Joseph Pak for their early contributions to the project.

Funding

This project was supported by the Food and Drug Administration (FDA) of the U.S. Department of Health and Human Services (HHS) as part of two financial assistance awards [U01FD005219 and HHSF223201810151C] totaling $453,423 and $499,806 with 100 percent funded by FDA/HHS. The contents are those of the author(s) and do not necessarily represent the official views of, nor an endorsement, by FDA/HHS, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie German.

Ethics declarations

Conflict of Interest

The opinions expressed in the manuscript are those of the authors and should not be interpreted as the position of the US Food and Drug Administration. All authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

German, C., Chen, Z., Przekwas, A. et al. Computational Model of In Vivo Corneal Pharmacokinetics and Pharmacodynamics of Topically Administered Ophthalmic Drug Products. Pharm Res 40, 961–975 (2023). https://doi.org/10.1007/s11095-023-03480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03480-6

Keywords

Navigation