Skip to main content

Advertisement

Log in

Comprehensive N-Glycan Mapping using Parallel Reaction Monitoring LC–MS/MS

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Glycan composition can impact a biotherapeutic’s safety and efficacy. For example, changes in the relative abundance of different glycan attributes like afucosylation, galactosylation or high-mannose content can change the properties or functions of a monoclonal antibody (mAb). While established methods can effectively characterize major glycan species in biotherapeutic drug products, there is still a need for more sensitive and specific methods that can effectively monitor low abundance species which may impact mAb function.

Methods

Glycans released from two mAbs, adalimumab and trastuzumab, were derivatized with Rapifluor-MS™. Glycans were separated using HILIC and detected using either fluorescence (FLD) or mass spectrometry (MS). A parallel reaction monitoring (PRM) workflow was used for the MS analysis.

Results and Conclusion

FLD analysis identified 18 and 19 glycan peaks in adalimumab and trastuzumab, respectively. Glycan identities were determined using MS-analysis and a high number of FLD peaks containing co-eluting glycan species were observed. PRM analysis quantified 38 and 39 glycan species in adalimumab and trastuzumab, respectively, and the increase in glycans that could be identified was due to superior sensitivity and selectivity compared to FLD. Notably, many low abundance glycans identified by PRM included species that were not reported in other studies. PRM also offered several additional advantages; unique structural features could be identified using the collected MS/MS spectra and de-coupling MS acquisition and data processing simplified the transfer of methods between instruments. The results established PRM as a precise, informative tool for glycan analysis and quantitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Lu J, Chu J, Zou Z, Hamacher NB, Rixon MW, Sun PD. Structure of FcgammaRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. Proc Natl Acad Sci U S A. 2015;112(3):833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hodoniczky J, Zheng YZ, James DC. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog. 2005;21(6):1644–52.

    Article  CAS  PubMed  Google Scholar 

  3. Boyd PN, Lines AC, Patel AK. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol. 1995;32(17–18):1311–8.

    Article  CAS  PubMed  Google Scholar 

  4. Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21(7):949–59.

    Article  CAS  PubMed  Google Scholar 

  5. Mizushima T, Yagi H, Takemoto E, Shibata-Koyama M, Isoda Y, Iida S, Masuda K, Satoh M, Kato K. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells. 2011;16(11):1071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol. 2010;28(8):863–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Planinc A, Dejaegher B, Vander Heyden Y, Viaene J, Van Praet S, Rappez F, Van Antwerpen P, Delporte C. Batch-to-batch N-glycosylation study of infliximab, trastuzumab and bevacizumab, and stability study of bevacizumab. Eur J Hosp Pharm. 2017;24(5):286–92.

    Article  PubMed  Google Scholar 

  9. Tebbey PW, Varga A, Naill M, Clewell J, Venema J. Consistency of quality attributes for the glycosylated monoclonal antibody Humira(R) (adalimumab). MAbs. 2015;7(5):805–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, Staples GO, Furuki K, Frenkel R, Hu Y, Sosic Z, Zhang P, Altmann F, Gru Nwald-Grube C, Shao C, Zaia J, Evers W, Pengelley S, Suckau D, Wiechmann A, Resemann A, Jabs W, Beck A, Froehlich JW, Huang C, Li Y, Liu Y, Sun S, Wang Y, Seo Y, An HJ, Reichardt NC, Ruiz JE, Archer-Hartmann S, Azadi P, Bell L, Lakos Z, An Y, Cipollo JF, Pucic-Bakovic M, Stambuk J, Lauc G, Li X, Wang PG, Bock A, Hennig R, Rapp E, Creskey M, Cyr TD, Nakano M, Sugiyama T, Leung PA, Link-Lenczowski P, Jaworek J, Yang S, Zhang H, Kelly T, Klapoetke S, Cao R, Kim JY, Lee HK, Lee JY, Yoo JS, Kim SR, Suh SK, de Haan N, Falck D, Lageveen-Kammeijer GSM, Wuhrer M, Emery RJ, Kozak RP, Liew LP, Royle L, Urbanowicz PA, Packer NH, Song X, Everest-Dass A, Lattova E, Cajic S, Alagesan K, Kolarich D, Kasali T, Lindo V, Chen Y, Goswami K, Gau B, Amunugama R, Jones R, Stroop CJM, Kato K, Yagi H, Kondo S, Yuen CT, Harazono A, Shi X, Magnelli PE, Kasper BT, Mahal L, Harvey DJ, O’Flaherty R, Rudd PM, Saldova R, Hecht ES, Muddiman DC, Kang J, Bhoskar P, Menard D, Saati A, Merle C, Mast S, Tep S, Truong J, Nishikaze T, Sekiya S, Shafer A, Funaoka S, Toyoda M, de Vreugd P, Caron C, Pradhan P, Tan NC, Mechref Y, Patil S, Rohrer JS, Chakrabarti R, Dadke D, Lahori M, Zou C, Cairo C, Reiz B, Whittal RM, Lebrilla CB, Wu L, Guttman A, Szigeti M, Kremkow BG, Lee KH, Sihlbom C, Adamczyk B, Jin C, Karlsson NG, Ornros J, Larson G, Nilsson J, Meyer B, Wiegandt A, Komatsu E, Perreault H, Bodnar ED, Said N, Francois YN, Leize-Wagner E, Maier S, Zeck A, Heck AJR, Yang Y, Haselberg R, Yu YQ, Alley W, Leone JW, Yuan H, Stein SE. NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Mol Cell Proteomics. 2020;19(1):11–30.

    Article  PubMed  Google Scholar 

  11. Kirchhoff CF, Wang XM, Conlon HD, Anderson S, Ryan AM, Bose A. Biosimilars: Key regulatory considerations and similarity assessment tools. Biotechnol Bioeng. 2017;114(12):2696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carillo S, Perez-Robles R, Jakes C, Ribeiro da Silva M, Millan Martin S, Farrell A, Navas N, Bones J. Comparing different domains of analysis for the characterisation of N-glycans on monoclonal antibodies. J Pharm Anal. 2020;10(1):23–34.

    Article  PubMed  Google Scholar 

  13. Keser T, Pavic T, Lauc G, Gornik O. Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis. Front Chem. 2018;6:324.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhou S, Veillon L, Dong X, Huang Y, Mechref Y. Direct comparison of derivatization strategies for LC-MS/MS analysis of N-glycans. Analyst. 2017;142(23):4446–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vainauskas S, Kirk CH, Petralia L, Guthrie EP, McLeod E, Bielik A, Luebbers A, Foster JM, Hokke CH, Rudd PM, Shi X, Taron CH. A novel broad specificity fucosidase capable of core alpha1-6 fucose release from N-glycans labeled with urea-linked fluorescent dyes. Sci Rep. 2018;8(1):9504.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Campbell MP, Royle L, Radcliffe CM, Dwek RA, Rudd PM. GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics. 2008;24(9):1214–6.

    Article  CAS  PubMed  Google Scholar 

  17. Hilliard M, Alley WR Jr, McManus CA, Yu YQ, Hallinan S, Gebler J, Rudd PM. Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis. MAbs. 2017;9(8):1349–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tao S, Huang Y, Boyes BE, Orlando R. Liquid chromatography-selected reaction monitoring (LC-SRM) approach for the separation and quantitation of sialylated N-glycans linkage isomers. Anal Chem. 2014;86(21):10584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou S, Hu Y, DeSantos-Garcia JL, Mechref Y. Quantitation of permethylated N-glycans through multiple-reaction monitoring (MRM) LC-MS/MS. J Am Soc Mass Spectrom. 2015;26(4):596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bourmaud A, Gallien S, Domon B. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications. Proteomics. 2016;16(15–16):2146–59.

    Article  CAS  PubMed  Google Scholar 

  21. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics. 2012;11(11):1475–88.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meyer JG, Schilling B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics. 2017;14(5):419–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kockmann T, Trachsel C, Panse C, Wahlander A, Selevsek N, Grossmann J, Wolski WE, Schlapbach R. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective. Proteomics. 2016;16(15–16):2183–92.

    Article  CAS  PubMed  Google Scholar 

  24. Nakamura K, Hirayama-Kurogi M, Ito S, Kuno T, Yoneyama T, Obuchi W, Terasaki T, Ohtsuki S. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM. Proteomics. 2016;16(15–16):2106–17.

    Article  CAS  PubMed  Google Scholar 

  25. Curran TG, Zhang Y, Ma DJ, Sarkaria JN, White FM. MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications. Nat Commun. 2015;6:5924.

    Article  PubMed  Google Scholar 

  26. Kim KH, Park GW, Jeong JE, Ji ES, An HJ, Kim JY, Yoo JS. Parallel reaction monitoring with multiplex immunoprecipitation of N-glycoproteins in human serum for detection of hepatocellular carcinoma. Anal Bioanal Chem. 2019;411(14):3009–19.

    Article  CAS  PubMed  Google Scholar 

  27. Schilling B, MacLean B, Held JM, Sahu AK, Rardin MJ, Sorensen DJ, Peters T, Wolfe AJ, Hunter CL, MacCoss MJ, Gibson BW. Multiplexed, Scheduled, High-Resolution Parallel Reaction Monitoring on a Full Scan QqTOF Instrument with Integrated Data-Dependent and Targeted Mass Spectrometric Workflows. Anal Chem. 2015;87(20):10222–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics. 2012;11(12):1709–23.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gallien S, Domon B. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry. Methods. 2015;81:15–23.

    Article  CAS  PubMed  Google Scholar 

  30. Lauber MA, Yu YQ, Brousmiche DW, Hua Z, Koza SM, Magnelli P, Guthrie E, Taron CH, Fountain KJ. Rapid Preparation of Released N-Glycans for HILIC Analysis Using a Labeling Reagent that Facilitates Sensitive Fluorescence and ESI-MS Detection. Anal Chem. 2015;87(10):5401–9.

    Article  CAS  PubMed  Google Scholar 

  31. Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. 2020;39(3):229–44.

    Article  CAS  PubMed  Google Scholar 

  32. Mirgorodskaya E, Karlsson NG, Sihlbom C, Larson G, Nilsson CL. Cracking the Sugar Code by Mass Spectrometry : An Invited Perspective in Honor of Dr. Catherine E. Costello, Recipient of the 2017 ASMS Distinguished Contribution Award. J Am Soc Mass Spectrom. 2018;29(6):1065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harvey DJ, Merry AH, Royle L, Campbell MP, Dwek RA, Rudd PM. Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics. 2009;9(15):3796–801.

    Article  CAS  PubMed  Google Scholar 

  34. Szabo Z, Thayer JR, Agroskin Y, Lin S, Liu Y, Srinivasan K, Saba J, Viner R, Huhmer A, Rohrer J, Reusch D, Harfouche R, Khan SH, Pohl C. In-depth analyses of native N-linked glycans facilitated by high-performance anion exchange chromatography-pulsed amperometric detection coupled to mass spectrometry. Anal Bioanal Chem. 2017;409(12):3089–101.

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez-De Melo I, Grassi P, Ochoa F, Bolivar J, Garcia-Cozar FJ, Duran-Ruiz MC. N-glycosylation profile analysis of Trastuzumab biosimilar candidates by Normal Phase Liquid Chromatography and MALDI-TOF MS approaches. J Proteomics. 2015;127(Pt B):225–33.

    Article  CAS  PubMed  Google Scholar 

  36. Largy E, Cantais F, Van Vyncht G, Beck A, Delobel A. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A. 2017;1498:128–46.

    Article  CAS  PubMed  Google Scholar 

  37. Maeda E, Kita S, Kinoshita M, Urakami K, Hayakawa T, Kakehi K. Analysis of nonhuman N-glycans as the minor constituents in recombinant monoclonal antibody pharmaceuticals. Anal Chem. 2012;84(5):2373–9.

    Article  CAS  PubMed  Google Scholar 

  38. Filep C, Borza B, Jarvas G, Guttman A. N-glycosylation analysis of biopharmaceuticals by multicapillary gel electrophoresis: Generation and application of a new glucose unit database. J Pharm Biomed Anal. 2020;178: 112892.

    Article  CAS  PubMed  Google Scholar 

  39. Zhuo Y, Keire DA, Chen K. Minor N-Glycan Mapping of Monoclonal Antibody Therapeutics Using Middle-Down NMR Spectroscopy. Mol Pharm. 2021;18(1):441–50.

    Article  CAS  PubMed  Google Scholar 

  40. Jeong YR, Kim SY, Park YS, Lee GM. Simple and Robust N-Glycan Analysis Based on Improved 2-Aminobenzoic Acid Labeling for Recombinant Therapeutic Glycoproteins. J Pharm Sci. 2018;107(7):1831–41.

    Article  CAS  PubMed  Google Scholar 

  41. Guan Y, Zhang M, Wang J, Schluter H. Comparative Analysis of Different N-glycan Preparation Approaches and Development of Optimized Solid-Phase Permethylation Using Mass Spectrometry. J Proteome Res. 2021;20(5):2914–22.

    Article  CAS  PubMed  Google Scholar 

  42. Hoffmann M, Pioch M, Pralow A, Hennig R, Kottler R, Reichl U, Rapp E. The Fine Art of Destruction: A Guide to In-Depth Glycoproteomic Analyses-Exploiting the Diagnostic Potential of Fragment Ions. Proteomics. 2018;18(24): e1800282.

    Article  PubMed  Google Scholar 

  43. Stanley P, Sundaram S, Tang J, Shi S. Molecular analysis of three gain-of-function CHO mutants that add the bisecting GlcNAc to N-glycans. Glycobiology. 2005;15(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  44. Dang L, Shen J, Zhao T, Zhao F, Jia L, Zhu B, Ma C, Chen D, Zhao Y, Sun S. Recognition of Bisecting N-Glycans on Intact Glycopeptides by Two Characteristic Ions in Tandem Mass Spectra. Anal Chem. 2019;91(9):5478–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

FDA CDER FY19 Critical Path award is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Chen or Hongbin Zhu.

Ethics declarations

Disclaimer

This publication reflects the views of the authors and should not be construed to represent FDA’s views or policies. 

Conflict of Interest

The authors declare no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shipman, J., Sommers, C., Keire, D.A. et al. Comprehensive N-Glycan Mapping using Parallel Reaction Monitoring LC–MS/MS. Pharm Res 40, 1399–1410 (2023). https://doi.org/10.1007/s11095-022-03453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03453-1

Keywords

Navigation