Skip to main content

Advertisement

Log in

Assessing Antigen-Adjuvant Complex Stability Against Physical Stresses By wNMR

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

This study applies an emerging analytical technology, wNMR (water proton nuclear magnetic resonance), to assess the stability of aluminum adjuvants and antigen-adjuvant complexes against physical stresses, including gravitation, flow and freeze/thaw. Results from wNMR are verified by conventional analytical technologies, including static light scattering and microfluidic imaging. The results show that wNMR can quickly and noninvasively determine whether an aluminum adjuvant or antigen-adjuvant complex sample has been altered by physical stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hills BP. Relaxometry: Two-dimensional methods. eMagRes. Published online September 15, 2009. https://doi.org/10.1002/9780470034590.emrstm1042.

  2. Yu YB, Taraban MB, Wang W, Briggs KT. Improving biopharmaceutical safety through verification-based quality control. Trends Biotechnol. 2017;35(12):1140–55. https://doi.org/10.1016/j.tibtech.2017.08.010.

    Article  CAS  PubMed  Google Scholar 

  3. Glasel JA, Lee KH. Interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems. J Am Chem Soc. 1974;96(4):970–8. https://doi.org/10.1021/ja00811a003.

    Article  CAS  Google Scholar 

  4. Daszkiewicz OK, Hennel JW, Lubas B, Szczepkowski TW. Proton magnetic relaxation and protein hydration. Nature. 1963;200(4910):1006–7. https://doi.org/10.1038/2001006a0.

    Article  CAS  Google Scholar 

  5. Bloch F. Nuclear Induction. Phys Rev. 1946;70(7–8):460–74. https://doi.org/10.1103/PhysRev.70.460.

    Article  CAS  Google Scholar 

  6. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94(3):630–8. https://doi.org/10.1103/PhysRev.94.630.

    Article  CAS  Google Scholar 

  7. Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29(8):688–91. https://doi.org/10.1063/1.1716296.

    Article  CAS  Google Scholar 

  8. Weerasekare M, Taraban MB, Shi X, Jeong EKK, Trewhella J, Yu YB. Sol and gel states in peptide hydrogels visualized by Gd(III)-enhanced magnetic resonance imaging. Pept Sci. 2011;96(6):734–43. https://doi.org/10.1002/bip.21612.

    Article  CAS  Google Scholar 

  9. Feng Y, Taraban MB, Yu YB. Linear dependence of the water proton transverse relaxation rate on the shear modulus of hydrogels. Chem Commun. 2014;50(81):12120–2. https://doi.org/10.1039/c4cc04717f.

    Article  CAS  Google Scholar 

  10. Feng Y, Taraban MB, Yu YB. Water proton NMR-a sensitive probe for solute association. Chem Commun (Camb). 2015;51(31):6804–7. https://doi.org/10.1039/c5cc00741k.

    Article  CAS  PubMed  Google Scholar 

  11. Taraban MB, DePaz RA, Lobo B, Yu YB. Use of water proton NMR to characterize protein aggregates: gauging the response and sensitivity. Anal Chem. 2019;91(6):4107–15. https://doi.org/10.1021/acs.analchem.8b05733.

    Article  CAS  PubMed  Google Scholar 

  12. Taraban MB, DePaz RA, Lobo B, Yu YB. Water proton NMR: a tool for protein aggregation characterization. Anal Chem. 2017;89(10):5494–502. https://doi.org/10.1021/acs.analchem.7b00464.

    Article  CAS  PubMed  Google Scholar 

  13. Yu YB, Feng Y, Taraban M. Water proton NMR for noninvasive chemical analysis and drug product inspection. Am Pharm Rev. 2017;20(3):34–8.

    CAS  Google Scholar 

  14. Taraban MB, Deredge DJ, Smith ME, et al. Conformational transition of a non-associative fluorinated amphiphile in aqueous solution. II. Conformational transition vs. supramolecular assembly. RSC Adv. 2019;9(4):1956–1966. https://doi.org/10.1039/C8RA08795D.

  15. Taraban MB, Deredge DJ, Smith ME, et al. Monitoring dendrimer conformational transition using 19F and 1H2O NMR. Magn Reson Chem. 2019;57(10):861–72. https://doi.org/10.1002/mrc.4849.

    Article  CAS  PubMed  Google Scholar 

  16. Taraban MB, Truong HC, Ilavsky J, DePaz RA, Lobo B, Yu YB. Noninvasive detection of nanoparticle clustering by water proton NMR. Transl Mater Res. 2017;4(2): 025002. https://doi.org/10.1088/2053-1613/aa7838.

    Article  CAS  Google Scholar 

  17. Briggs KT, Taraban MB, Yu YB. Water proton NMR detection of amide hydrolysis and diglycine dimerization. Chem Commun. 2018;54(51):7003–6. https://doi.org/10.1039/C8CC03935F.

    Article  CAS  Google Scholar 

  18. Taraban MB, Fox CB, Yu YB. Assessing aluminum vaccine adjuvant filling, sedimentation, and resuspension in sealed vials using water proton NMR. Am Pharm Rev. 2019;22(February):70–3.

    Google Scholar 

  19. Taraban MB, Yu YB. Monitoring of the sedimentation kinetics of vaccine adjuvants using water proton NMR relaxation. Magn Reson Chem. 2021;59(2):147–61. https://doi.org/10.1002/mrc.5096.

    Article  CAS  PubMed  Google Scholar 

  20. Briggs KT, Taraban MB, Wang W, Yu YB. Nondestructive quantitative inspection of drug products using benchtop nmr relaxometry-the case of NovoMix® 30. AAPS PharmSciTech. 2019;20(5):214. https://doi.org/10.1208/s12249-019-1428-6.

    Article  PubMed  Google Scholar 

  21. Taraban MB, Wang Y, Briggs KT, Yu YB. Inspecting insulin products using water proton NMR. I. Noninvasive vs Invasive Inspection. J Diabetes Sci Technol. 2022;16(6):1410–8. https://doi.org/10.1177/19322968211023806.

  22. Briggs KT, Taraban MB, Yu YB. Quality assurance at the point-of-care: Noninvasively detecting vaccine freezing variability using water proton NMR. Vaccine. 2020;38(31):4853–60. https://doi.org/10.1016/j.vaccine.2020.05.049.

    Article  PubMed  Google Scholar 

  23. Briggs KT, Taraban MB, Yu YB. Using water proton NMR to characterize aluminum-adjuvanted vaccines. In: Mantle M, Hughes L, eds. Magnetic resonance and its applications in drug formulation and delivery: New developments in NMR. MRC Book Series; 2021:Accepted.

  24. Taraban MB, Jones MT, Yu YB. Rapid and noninvasive quantification of capsid gene filling level using water proton nuclear magnetic resonance. Anal Chem. 2021;93(48):15816–20. https://doi.org/10.1021/acs.analchem.1c04088.

    Article  CAS  PubMed  Google Scholar 

  25. Taraban MB, Briggs KT, Merkel P, Yu YB. Flow water proton NMR: In-line process analytical technology for continuous biomanufacturing. Anal Chem. 2019;91(21):13538–46. https://doi.org/10.1021/acs.analchem.9b02622.

    Article  CAS  PubMed  Google Scholar 

  26. HogenEsch H, O’Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. npj Vaccines. 2018;3(1):51. https://doi.org/10.1038/s41541-018-0089-x.

  27. Vecchi S, Bufali S, Skibinski DAG, O’hagan DT, Singh M. Aluminum adjuvant dose guidelines in vaccine formulation for preclinical evaluations. J Pharm Sci. 2012;101(1):17–20. https://doi.org/10.1002/jps.22759.

  28. Farell C. Analytical control strategies for aluminum adjuvants. Published 2014. Accessed May 11, 2021. https://cdn.ymaws.com/www.casss.org/resource/resmgr/WCBP_Speaker_Slides/2014_WCBP_Chris_Farrell.pdf.

  29. Shardlow E, Mold M, Exley C. From stock bottle to vaccine: elucidating the particle size distributions of aluminum adjuvants using dynamic light scattering. Front Chem. 2017;4:48. https://www.frontiersin.org/article/https://doi.org/10.3389/fchem.2016.00048.

  30. Kolade OO, Jin W, Tengroth C, Green KD, Bracewell DG. Shear effects on aluminum phosphate adjuvant particle properties in vaccine drug products. J Pharm Sci. 2015;104(2):378–87. https://doi.org/10.1002/jps.24127.

    Article  CAS  PubMed  Google Scholar 

  31. Caulfield MJ, Shi L, Wang S, et al. Effect of alternative aluminum adjuvants on the absorption and immunogenicity of HPV16 L1 VLPs in mice. Hum Vaccin. 2007;3(4):139–45. https://doi.org/10.4161/hv.3.4.4309.

    Article  PubMed  Google Scholar 

  32. Gill SC, von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989;182(2):319–26. https://doi.org/10.1016/0003-2697(89)90602-7.

    Article  CAS  PubMed  Google Scholar 

  33. Topgaard D, Sakellariou D, Pines A. NMR spectroscopy in inhomogeneous B0 and B1 fields with non-linear correlation. J Magn Reson. 2005;175(1):1–10. https://doi.org/10.1016/j.jmr.2005.03.006.

    Article  CAS  PubMed  Google Scholar 

  34. Dharmakumar R, Plewes DB, Wright GA. On the parameters affecting the sensitivity of MR measures of pressure with microbubbles. Magn Reson Med. 2002;47(2):264–73. https://doi.org/10.1002/mrm.10075.

    Article  PubMed  Google Scholar 

  35. Weisskoff R, Zuo CS, Boxerman JL, Rosen BR. Microscopic susceptibility variation and transverse relaxation: Theory and experiment. Magn Reson Med. 1994;31(6):601–10. https://doi.org/10.1002/mrm.1910310605.

    Article  CAS  PubMed  Google Scholar 

  36. The World Health Organization. WHO recommends recall and destruction of all lots of SHAN5 vaccine as a precautionary measure, 26 April 2010. Jt WHO-UNICEF Statement. Published online 2010. http://www.who.int/immunization_standards/vaccine_quality/who_unicef_joint_statement_Shan5_26apr10.pdf.

  37. Lewis LM, Guo J, Torres E, et al. Ex situ and in situ characterization of vaccine suspensions in pre-filled syringes. J Pharm Sci. 2017;106(8):2163–7. https://doi.org/10.1016/j.xphs.2017.04.055.

    Article  CAS  PubMed  Google Scholar 

  38. Kartoğlu Ü, Özgüler NK, Wolfson LJ, Kurzątkowski W. Validation of the shake test for detecting freeze damage to adsorbed vaccines. Bull World Health Organ. 2010;88(7):624–31. https://doi.org/10.2471/blt.09.056879.

    Article  PubMed  PubMed Central  Google Scholar 

  39. World Health Organziation. Module 2: The vaccine cold chain. In: Immunization in Practice: A Practical Guide for Health Staff. WHO Press; 2015:44–46. http://apps.who.int/iris/bitstream/handle/10665/193412/9789241549097_eng.pdf;jsessionid=4A6922806C16D12657B81A3CA119E6AC?sequence=1.

  40. Salnikova MS, Davis H, Mensch C, Celano L, Thiriot DS. Influence of formulation ph and suspension state on freezing-induced agglomeration of aluminum adjuvants. J Pharm Sci. 2012;101(3):1050–62. https://doi.org/10.1002/jps.22815.

    Article  CAS  PubMed  Google Scholar 

  41. Brooks RA, Moiny F, Gillis P. On T2-shortening by weakly magnetized particles: The chemical exchange model. Magn Reson Med. 2001;45(6):1014–20. https://doi.org/10.1002/mrm.1135.

    Article  CAS  PubMed  Google Scholar 

  42. Kurzątkowski W, Kartoğlu Ü, Staniszewska M, Górska P, Krause A, Wysocki MJ. Structural damages in adsorbed vaccines affected by freezing. Biologicals. 2013;41(2):71–6. https://doi.org/10.1016/j.biologicals.2011.10.011.

    Article  CAS  PubMed  Google Scholar 

  43. Waynes WM, Lide DR, Brune TJ, editors. CRC Handbook of chemistry and physics. 95th ed. Taylor and Francis Group: CRC Press; 2014.

    Google Scholar 

  44. Callaghan PT. Susceptibility-limited resolution in nuclear magnetic resonance microscopy. J Magn Reson. 1990;87(2):304–18. https://doi.org/10.1016/0022-2364(90)90007-V.

    Article  Google Scholar 

  45. Muller RN, Gillis P, Moiny F, Roch A. Transverse relaxivity of particulate MRI contrast media: From theories to experiments. Magn Reson Med. 1991;22(2):178–82. https://doi.org/10.1002/mrm.1910220203.

    Article  CAS  PubMed  Google Scholar 

  46. Vuong QL, Gillis P, Gossuin Y. Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents. J Magn Reson. 2011;212(1):139–48. https://doi.org/10.1016/j.jmr.2011.06.024.

    Article  CAS  PubMed  Google Scholar 

  47. Kurzątkowski W, Kartoğlu Ü, Górska P, et al. Physical and chemical changes in Alhydrogel™ damaged by freezing. Vaccine. 2018;36(46):6902–10. https://doi.org/10.1016/j.vaccine.2018.10.023.

    Article  CAS  PubMed  Google Scholar 

  48. Xu AY, Rinee KC, Stemple C, et al. Counting the water: Characterize the hydration level of aluminum adjuvants using contrast matching small-angle neutron scattering. Colloids Surfaces A Physicochem Eng Asp. 2022;648: 129285. https://doi.org/10.1016/j.colsurfa.2022.129285.

    Article  CAS  Google Scholar 

  49. Li J, Yu G, Liang Z, et al. Mechanistic elucidation of freezing-induced surface decomposition of aluminum oxyhydroxide adjuvant. iScience. 2022;25(6):104456. https://doi.org/10.1016/j.isci.2022.104456.

  50. Bloembergen N, Purcell EM, Pound RV. Relaxation Effects in Nuclear Magnetic Resonance Absorption. PhysRev. 1948;73(7):679–712. https://doi.org/10.1103/PhysRev.73.679.

    Article  CAS  Google Scholar 

  51. Hahn EL. An accurate nuclear magnetic resonance method for measuring spin-lattice relaxation times. Phys Rev. 1949;76(1):145–6. https://doi.org/10.1103/PhysRev.76.145.

    Article  CAS  Google Scholar 

  52. Hahn EL. Spin echoes. Phys Rev. 1950;80(4):580–94. https://doi.org/10.1103/PhysRev.80.580.

    Article  Google Scholar 

  53. Suryan G. Nuclear resonance in flowing liquids. Proc Indian Acad Sci - Sect A. 1951;33(2):107–11. https://doi.org/10.1007/BF03172192.

    Article  Google Scholar 

  54. Lauterbur PC. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature. 1973;242(5394):190–1. https://doi.org/10.1038/242190a0.

    Article  CAS  Google Scholar 

  55. Ogawa S, Lee T, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14(1):68–78. https://doi.org/10.1002/mrm.1910140108.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by NIIMBL (the National Institute for Innovation in Manufacturing Biopharmaceuticals) though grant PC2.2–077.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihua Bruce Yu, Michael T. Jones, Akhilesh Bhambhani or Yongchao Su.

Ethics declarations

Conflicts of Interests/Competing Interests

Pfizer and Merck authors declared no conflict of interests. UMB authors, M.B.T., K.T.B. and Y.B.Y., are co-inventors of issued and pending patents on wNMR owned by UMB.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2171 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taraban, M.B., Briggs, K.T., Yu, Y.B. et al. Assessing Antigen-Adjuvant Complex Stability Against Physical Stresses By wNMR. Pharm Res 40, 1435–1446 (2023). https://doi.org/10.1007/s11095-022-03437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03437-1

Keywords

Navigation