Skip to main content
Log in

Quantum Cascade Laser Based Infrared Spectroscopy: A New Paradigm for Protein Secondary Structure Measurement

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Mid-infrared spectroscopy is one of the major analytical techniques employed for measurements of protein structure in solution. Traditional Fourier Transform-Infrared (FT-IR) measurement is limited by its blackbody light source that is inherently spatially incoherent and has low optical power output. This limitation is pronounced when working with proteins in aqueous solutions. Strong absorbance of water in protein amide I region 1600–1700 cm−1 restricts light path length to <10 μm and imposes significant experimental challenges in sample and flow cell handling. Emerging laser spectroscopic techniques use high-power coherent laser as light source that overcomes the limitation in FT-IR measurement. In this study, we employed an innovative infrared spectrometer that uses quantum cascade laser (QCL) as light source. Continuous infrared radiation from this laser source can be swiftly swept within the amide I region (1600–1700 cm−1) and amide II region (1500–1600 cm−1), which makes this technique ideal for protein secondary structure study. Protein solutions as low as 0.5 mg/mL were measured rapidly without any sample preparation. Infrared spectra of model proteins were thus collected, and a chemometric model based on partial least squares regression was developed to quantify α-helix and β-strand motifs in protein secondary structure. The model was applied to measurement of the native secondary structure of commercial therapeutic proteins and bovine serum albumin (BSA) and in thermal degradation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baker M. Structural biology: the gatekeepers revealed. Nature. 2010;10:823–6.

    Google Scholar 

  2. Moraes I, Quigley A. Structural biology and structure-function relationships of membrane proteins. Biology. 2021;10(3):245.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rost B. Review: protein secondary structure prediction continues to rise. J Struct Biol. 2001;134:204–18.

    Article  CAS  PubMed  Google Scholar 

  4. Xie M, Schowen RL. Secondary structure and protein deamidation. J Pharm Sci. 1999;88:8–13.

    Article  CAS  PubMed  Google Scholar 

  5. Pelton JT, McLean LR. Spectroscopic methods for analysis of protein secondary structure. Anal Biochem. 2000;277:167–76.

    Article  CAS  PubMed  Google Scholar 

  6. Bose K, Rathore I, Mishra V, Bhaumik P. Advancements in macromolecular crystallography: from past to present. Emerg Top Life Sci. 2021;5:127–49.

    Article  Google Scholar 

  7. Kay LE. NMR studies of protein structure and dynamics. J Magn Reason. 2005;173:193–207.

    Article  CAS  Google Scholar 

  8. Miles AJ, Janes RW, Wallace BA. Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. Chem Soc Rev. 2021;50:8400–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sergei K. CD spectroscopy has intrinsic limitations for protein secondary structure analysis. Anal Biochem. 2009;389:174–6.

    Article  Google Scholar 

  10. Elliott A, Ambrose EJ. Structure of synthetic polypeptides. Nature. 1950;165:921–2.

    Article  CAS  PubMed  Google Scholar 

  11. Yang H, Yang S, Kong J, Dong A, Yu S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc. 2015;3:382–96.

    Article  Google Scholar 

  12. López-Lorente ÁI, Mizaikoff B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem. 2016;408:2875–89.

    Article  PubMed  Google Scholar 

  13. Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364.

    Article  CAS  PubMed  Google Scholar 

  14. Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta. 1767;2007:1073–101.

    Google Scholar 

  15. Lee J, Kang TD, Chae B. Synchrotron infrared spectroscopy. J Phys High Tech. 2012;21:30.

    Article  Google Scholar 

  16. Maragkou M. Supercontinuum: reaching the mid-infrared. Nat Photonics. 2014;8:746.

    Google Scholar 

  17. Yu Y, Anthony JH, Claire FG. Mid-infrared quantum cascade lasers. Nat Photonics. 2012;6:432–9.

    Article  Google Scholar 

  18. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY. Quantum cascade laser. Science. 1994;264:553–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kuligowski S, Alcaráz Q, Lendl B. External cavity-quantum cascade laser (EC-QCL) spectroscopy for protein analysis in bovine milk. Anal Chim Acta. 2017;963:99–105.

    Article  CAS  PubMed  Google Scholar 

  20. Alcaráz MR, Schwaighofer A, Goicoechea H, Lendl B. EC-QCL mid-IR transmission spectroscopy for monitoring dynamic changes of protein secondary structure in aqueous solution on the example of β-aggregation in alcohol-denaturated α-chymotrypsin. Anal Bioanal Chem. 2016;408:3933–41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schwaighofer A, Alcaraz MR, Lux L, Lendl B. pH titration of β-lactoglobulin monitored by laser-based mid-IR transmission spectroscopy coupled to chemometric analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2020;226:117636.

    Article  CAS  PubMed  Google Scholar 

  22. Ivancic VA, Lombardo HL, Ma E, Wikström M, Batabyal D. Advancing secondary structure characterization of monoclonal antibodies using microfluidic modulation spectroscopy. Anal Biochem. 2022;646:114629.

    Article  CAS  PubMed  Google Scholar 

  23. Liu LL, Wang L, Zonderman J, Rouse JC, Kim HY. Automated, high-throughput infrared spectroscopy for secondary structure analysis of protein biopharmaceuticals. J Pharm Sci. 2020;109:3223–30.

    Article  CAS  PubMed  Google Scholar 

  24. Dong A, Huang P, Caughey WS. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990;29:3303–8.

    Article  CAS  PubMed  Google Scholar 

  25. Susi H, Byler M. Fourier deconvolution of the amide I Raman band of proteins as related to conformation. Appl Spectrosc. 1988;42:819–26.

    Article  CAS  Google Scholar 

  26. Cai S, Singh BR. A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry. 2004;43:2541–9.

    Article  CAS  PubMed  Google Scholar 

  27. Wilcox KE, Blanch EW, Doig AJ. Determination of protein secondary structure from infrared spectra using partial least-squares regression. Biochemistry. 2016;55:3794–802.

    Article  CAS  PubMed  Google Scholar 

  28. Takeda K, Wada A, Yamamoto K, Moriyama Y, Aoki K. Conformational change of bovine serum albumin by heat treatment. J Protein Chem. 1989;8:653–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hawe A, Wiggenhorn M, van de Weert M, Garbe JH, Mahler HC, Jiskoot W. Forced degradation of therapeutic proteins. J Pharm Sci. 2012;101:895–913.

    Article  CAS  PubMed  Google Scholar 

  30. Mickey CD. Chemical kinetics: reaction rates. J Chem Ed. 1980;57:659.

    Article  CAS  Google Scholar 

  31. Borzova VA, Markossian KA, Chebotareva NA, Kleymenov SY, Poliansky NB, Muranov KO, Stein-Margolina VA, Shubin VV, Markov DI, Kurganov BI. Kinetics of thermal denaturation and aggregation of bovine serum albumin. PLoS ONE. 2016;11:e0153495.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vermeer AW, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J. 2000;78:394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akazawa-Ogawa Y, Nagai H, Hagihara Y. Heat denaturation of the antibody, a multi-domain protein. Biophys Rev. 2018;10:255–8.

    Article  CAS  PubMed  Google Scholar 

  34. Indyk HE, Williams JW, Patel HA. Analysis of denaturation of bovine IgG by heat and high pressure using an optical biosensor. Int Dairy J. 2008;18:359–66.

    Article  CAS  Google Scholar 

  35. Akazawa-Ogawa Y, Takashima M, Lee YH, Ikegami T, Goto Y, Uegaki K, Hagihara Y. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications. J Biol Chem. 2014;289:15666–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is the result of research projects funded by Bristol-Myers Squibb Company.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Chunguang Jin or Ravi Kalyanaraman.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 42 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Patel, A., Peters, J. et al. Quantum Cascade Laser Based Infrared Spectroscopy: A New Paradigm for Protein Secondary Structure Measurement. Pharm Res 40, 1507–1517 (2023). https://doi.org/10.1007/s11095-022-03422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03422-8

Keywords

Navigation