Skip to main content

Advertisement

Log in

Transdermal Delivery of Metformin Utilizing Ionic Liquid Technology: Insight Into the Relationship Between Counterion Structures and Properties

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study was to explore the feasibility of transdermal delivery of metformin, a commonly used oral antidiabetic drug, by ionic liquid (IL) technology.

Methods

Metformin hydrochloride (MetHCl) was first transformed into three kinds of ILs with different counterions. The physicochemical properties of the obtained ILs were characterized in depth. The simulation of stable configuration and calculation of interaction energies were conducted based on density functional theory (DFT). Skin-PAMPA was used to evaluate the intrinsic transdermal permeation properties. The cytotoxicity assay of these ILs was conducted using HaCaT cells to evaluate the toxicity to skin. These metformin ILs were then formulated into transdermal patch, and the transdermal potential was further evaluated using in vitro dissolution test and skin permeation assay. Finally, the pharmacokinetic profiles of these metformin IL-containing patches were determined.

Results

Among all the three Met ILs, metformin dihexyl sulfosuccinate (MetDH) with proper overall physiochemical and biological properties demonstrated the highest relative bioavailability. Metformin docusate (MetD) with the highest lipophilicity and intrinsic transdermal permeability exhibited the most significant sustained release profile in vivo. Both MetDH and MetD were the promising candidates for further clinical investigations.

Conclusions

Overall, the properties of ILs were closely related to the structures of counterion. IL technology provided the opportunities to finely tune the solid-state and biological properties of Metformin and facilitated the successful delivery by transdermal route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    Article  PubMed  Google Scholar 

  2. Huttunen KM, Mannila A, Laine K, Kemppainen E, Leppanen J, Vepsalainen J, et al. The first bioreversible prodrug of metformin with improved lipophilicity and enhanced intestinal absorption. J Med Chem. 2009;52(14):4142–8.

    Article  CAS  PubMed  Google Scholar 

  3. Scheen AJ. ADOPT study: which first-line glucose-lowering oral medication in type 2 diabetes? Rev Med Liege. 2007;62(1):48–52.

    CAS  PubMed  Google Scholar 

  4. Vexiau P, Mavros P, Krishnarajah G, Lyu R, Yin D. Hypoglycaemia in patients with type 2 diabetes treated with a combination of metformin and sulphonylurea therapy in France. Diabetes Obes Metab. 2008;10:16–24.

    Article  PubMed  Google Scholar 

  5. Hermann LS. Metformin: a review of its pharmacological properties and therapeutic use. Diabete Metab. 1979;5(3):233–45.

    CAS  PubMed  Google Scholar 

  6. Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos. 2007;35(10):1956–62.

    Article  CAS  PubMed  Google Scholar 

  7. Manconi M, Nacher A, Merino V, Merino-Sanjuan M, Manca ML, Mura C, et al. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation. AAPS PharmSciTech. 2013;14(2):485–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98.

    Article  CAS  PubMed  Google Scholar 

  9. Stahl PH, Wermuth CG. Handbook of Pharmaceutical Salts: Properties, selection, and use. 1st ed. Wiley-Vch; 2008.

  10. Loona S, Gupta NB, Khan MU. Preparation and characterization of metformin proniosomal gel for treatment of diabetes mellitus. J Pharm Sci. 2012;15(2):108–14.

    CAS  Google Scholar 

  11. James JE, Mahalingan K. Formulation and evaluation of transdermal drug delivery system of an anti-diabetic drug. Int J Pharm Res Scholars. 2016;5(3):63–70.

    CAS  Google Scholar 

  12. Liu T, Jiang G, Song G, Sun Y, Zhang X, Zeng Z. Fabrication of rapidly separable microneedles for transdermal delivery of metformin on diabetic rats. J Pharm Sci. 2021;110(8):3004–10.

    Article  CAS  PubMed  Google Scholar 

  13. Kelley SP, Narita A, Holbrey JD, Green KD, Reichert WM, Rogers RD. Understanding the effects of ionicity in salts, solvates, co-crystals, ionic co-crystals, and ionic liquids, rather than nomenclature, is critical to understanding their behavior. Cryst Growth Des. 2013;13(3):965–75.

    Article  CAS  Google Scholar 

  14. Marsh KN, Boxall JA, Lichtenthaler R. Room temperature ionic liquids and their mixtures - a review. Fluid Phase Equilib. 2004;219(1):93–8.

    Article  CAS  Google Scholar 

  15. Stoimenovski J, MacFarlane DR, Bica K, Rogers RD. Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm Res. 2010;27(4):521–6.

    Article  CAS  PubMed  Google Scholar 

  16. Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT, et al. The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem. 2007;31(8):1429–36.

    Article  CAS  Google Scholar 

  17. Stoimenovski J, MacFarlane DR. Enhanced membrane transport of pharmaceutically active protic ionic liquids. Chem Commun (Camb). 2011;47(41):11429–31.

    Article  CAS  Google Scholar 

  18. Miwa Y, Hamamoto H, Ishida T. Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Eur J Pharm Biopharm. 2016;102:92–100.

    Article  CAS  PubMed  Google Scholar 

  19. Moreira DN, Fresno N, Perez-Fernandez R, Frizzo CP, Goya P, Marco C, et al. Bronsted acid-base pairs of drugs as dual ionic liquids: NMR ionicity studies. Tetrahedron. 2015;71(4):676–85.

    Article  CAS  Google Scholar 

  20. Florindo C, Araujo JM, Alves F, Matos C, Ferraz R, Prudencio C, et al. Evaluation of solubility and partition properties of ampicillin-based ionic liquids. Int J Pharmaceut. 2013;456(2):553–9.

    Article  CAS  Google Scholar 

  21. Bica K, Rijksen C, Nieuwenhuyzen M, Rogers RD. In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys Chem Chem Phys. 2010;12(8):2011–7.

    Article  CAS  PubMed  Google Scholar 

  22. Patinha DJS, Tomé LC, Florindo C, Soares HR, Coroadinha AS, Marrucho IM. New low-toxicity cholinium-based ionic liquids with perfluoroalkanoate anions for aqueous biphasic system implementation. Acs Sustain Chem Eng. 2016;4(5):2670–9.

    Article  CAS  Google Scholar 

  23. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, et al. The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem. 2007;31(8):1429.

    Article  CAS  Google Scholar 

  24. Galaon T, Tache F, David V. Retention behaviour of two biguanidines in liquid chromatography based on cyano stationary phase. Rev Roum Chim. 2009;54(5):359–62.

    CAS  Google Scholar 

  25. Monti D, Egiziano E, Burgalassi S, Chetoni P, Chiappe C, Sanzone A, et al. Ionic liquids as potential enhancers for transdermal drug delivery. Int J Pharmaceut. 2016;516(1–2):45–51.

    Google Scholar 

  26. Chen J, Jiang QD, Wu YM, Liu P, Yao JH, Lu Q, et al. Potential of essential oils as penetration enhancers for transdermal administration of ibuprofen to treat dysmenorrhoea. Molecules. 2015;20(10):18219–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Almeida TS, Julio A, Caparica R, Rosado C, Fernandes AS, Saraiva N, et al. Ionic liquids as solubility/permeation enhancers for topical formulations: Skin permeation and cytotoxicity characterization. Toxicol Lett. 2015;238(2):S293.

    Article  Google Scholar 

  28. Rinaldi F, Del Favero E, Rondelli V, Pieretti S, Bogni A, Ponti J, et al. pH-sensitive niosomes: Effects on cytotoxicity and on inflammation and pain in murine models. J Enzyme Inhib Med Chem. 2017;32(1):538–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li W, Wu XM, Qi CS, Rong H, Gong LF. Study on the relationship between the interaction energy and the melting point of amino acid cation based ionic liquids. J Mol Struc-Theochem. 2010;942(1–3):19–25.

    CAS  Google Scholar 

  30. Lopez-Bueno C, Bittermann MR, Dacuna-Marino B, Llamas-Saiz AL, Del Carmen Gimenez-Lopez M, Woutersen S, et al. Low temperature glass/crystal transition in ionic liquids determined by H-bond vs. coulombic strength. Phys Chem Chem Phys. 2020;22(36):20524–30.

    Article  CAS  PubMed  Google Scholar 

  31. Gratieri T, Kalia YN. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier. Adv Drug Deliv Rev. 2013;65(2):315–29.

    Article  CAS  PubMed  Google Scholar 

  32. Wu H, Fang F, Zheng LL, Ji WJ, Qi MH, Hong MH, et al. Ionic liquid form of donepezil: Preparation, characterization and formulation development. J Mol Liq. 2020;300:112308.

  33. Zhou BJ, Liu SY, Yin HM, Qi MH, Hong MH, Ren GB. Development of gliclazide ionic liquid and the transdermal patches: An effective and noninvasive sustained release formulation to achieve hypoglycemic effects. Eur J Pharm Sci. 2021;164:105915.

  34. Jepps OG, Dancik Y, Anissimov YG, Roberts MS. Modeling the human skin barrier–towards a better understanding of dermal absorption. Adv Drug Deliv Rev. 2013;65(2):152–68.

    Article  CAS  PubMed  Google Scholar 

  35. Avdeef A, Bendels S, Di L, Faller B, Kansy M, Sugano K, et al. PAMPA - Critical factors for better predictions of absorption. J Pharm Sci-Us. 2007;96(11):2893–909.

    Article  CAS  Google Scholar 

  36. Avdeef A, Tsinman O. PAMPA - A drug absorption in vitro model. Chemical selectivity due to membrane hydrogen bonding: In combo comparisons of HDM-, DOPC-, and DS-PAMPA models. Eur J Pharm Sci. 2006;28(1–2):43–50.

    Article  CAS  PubMed  Google Scholar 

  37. Sinko B, Garrigues TM, Balogh GT, Nagy ZK, Tsinman O, Avdeef A, et al. Skin-PAMPA: A new method for fast prediction of skin penetration. Eur J Pharm Sci. 2012;45(5):698–707.

    Article  CAS  PubMed  Google Scholar 

  38. Balázs B, Vizserálek G, Berkó S, Budai-Szűcs M, Kelemen A, Sinkó B, et al. Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J Pharm Sci. 2016;105(3):1134–40.

    Article  PubMed  Google Scholar 

  39. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663–9.

    Article  CAS  PubMed  Google Scholar 

  40. Klein R, Muller E, Kraus B, Brunner G, Estrine B, Touraud D, et al. Biodegradability and cytotoxicity of choline soaps on human cell lines: effects of chain length and the cation. RSC Adv. 2013;3(45):23347–54.

    Article  CAS  Google Scholar 

  41. Stolte S, Arning J, Bottin-Weber U, Matzke M, Stock F, Thiele K, et al. Anion effects on the cytotoxicity of ionic liquids. Green Chem. 2006;8(7):621–9.

    Article  CAS  Google Scholar 

  42. Dobler D, Schmidts T, Klingenhofer I, Runkel F. Ionic liquids as ingredients in topical drug delivery systems. Int J Pharmaceut. 2013;441(1–2):620–7.

    Article  CAS  Google Scholar 

  43. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–18.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Zhu X, Shen J, Xu H, Ma M, Gu W, et al. Characterization of a liposome-based artificial skin membrane for in vitro permeation studies using Franz diffusion cell device. J Liposome Res. 2017;27(4):302–11.

  45. Moniruzzaman M, Tamura M, Tahara Y, Kamiya N, Goto M. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: Characterization and cytotoxicity evaluation. Int J Pharmaceut. 2010;400(1–2):243–50.

    Article  CAS  Google Scholar 

Download references

Funding

This work was sponsored by Natural Science Foundation of Shanghai (No. 20ZR1413600), the National Natural Science Foundation of China (No. 21576080) and Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism (Shanghai Municipal Education Commission).

Author information

Authors and Affiliations

Authors

Contributions

Minghuang Hong: conceptualization, supervision, funding acquisition, methodology, investigation, writing-review & editing. Qinglin Wang: investigation, software, formal analysis, writing-original draft. Kai Wang: investigation, formal analysis, writing-original draft. Jinghui Li: investigation, validation. Ming-Hui Qi: Resources. Guo-Bin Ren: supervision, funding acquisition, project administration.

Corresponding authors

Correspondence to Minghuang Hong or Guo-Bin Ren.

Ethics declarations

Conflict of Interest Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18.1 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, M., Wang, Q., Wang, K. et al. Transdermal Delivery of Metformin Utilizing Ionic Liquid Technology: Insight Into the Relationship Between Counterion Structures and Properties. Pharm Res 39, 2459–2474 (2022). https://doi.org/10.1007/s11095-022-03394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03394-9

Keywords

Navigation