Skip to main content

Advertisement

Log in

Progress in Intradermal and Transdermal Gene Therapy with Microneedles

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Gene therapy is one of the most widely studied treatments and has the potential to treat a variety of intractable diseases. The skin's limited permeability, as the body's initial protective barrier, drastically inhibits the delivery effect of gene medicine. Given the potential adverse effects and physicochemical features of the medications, improving generic drug penetration into the skin barrier and achieving an effective level of target tissues remains a challenge. Microneedles have made tremendous improvements in aided gene transfer and medication delivery as a unique method. Microneedles offer the advantage of being minimally invasive and painless, as well as the ability to distribute gene medicines straight through the stratum corneum. Microneedles have been used to penetrate skin tissue with various nucleic acids and medicines in recent years, allowing for a wide range of applications in the treatment of skin ailments. This review focuses on skin-related disorders and immunity, and it primarily discusses the progress of microneedle transdermal gene therapy in recent years. It also complements the current major vectors and related microneedle gene therapy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mostafavi Yazdi SJ, Baqersad J. Mechanical modeling and characterization of human skin: A review. J Biomech. 2022;130: 110864.

    Article  PubMed  Google Scholar 

  2. Ain QU, Campos EVR, Huynh A, Witzigmann D, Hedtrich S. Gene Delivery to the Skin - How Far Have We Come? Trends Biotechnol. 2021;39(5):474–87.

    Article  CAS  PubMed  Google Scholar 

  3. Berdyshev E, Bronova I, Leung DYM, Goleva E. Methodological Considerations for Lipid and Polar Component Analyses in Human Skin Stratum Corneum. Cell Biochem Biophys. 2021;79(3):659–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gawronska-Kozak B. Foxn1 Control of Skin Function. Appl Sci. 2020;10(16):5685.

    Article  CAS  Google Scholar 

  5. Tavakoli S, Klar AS. Advanced Hydrogels as Wound Dressings Biomolecules. 2020;10(8):1169.

    CAS  Google Scholar 

  6. Rasmont V, Valois A, Gueniche A, Sore G, Kerob D, Nielsen M, et al. Vichy volcanic mineralizing water has unique properties to strengthen the skin barrier and skin defenses against exposome aggressions. J Eur Acad Dermatol Venereol. 2022;36(Suppl 2):5–15.

    Article  CAS  PubMed  Google Scholar 

  7. Mariath LM, Santin JT, Schuler-Faccini L, Kiszewski AE. Inherited epidermolysis bullosa: update on the clinical and genetic aspects. An Bras Dermatol. 2020;95(5):551–69.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Has C, Bauer JW, Bodemer C, Bolling MC, Bruckner-Tuderman L, Diem A, et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol. 2020;183(4):614–27.

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Kong Q, Yue J, Gou X, Xu M, Wu X. Genome-edited skin epidermal stem cells protect mice from cocaine-seeking behaviour and cocaine overdose. Nat Biomed Eng. 2019;3(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  10. Sand FL, Thomsen SF. Skin diseases of the vulva: Infectious diseases. J Obstet Gynaecol. 2017;37(7):840–8.

    Article  PubMed  Google Scholar 

  11. Ma CC, Wang ZL, Xu T, He ZY, Wei YQ. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv. 2020;40: 107502.

    Article  CAS  PubMed  Google Scholar 

  12. Choate KA, Kinsella TM, Williams ML, Nolan GP, Khavari PA. Transglutaminase 1 delivery to lamellar ichthyosis keratinocytes. Hum Gene Ther. 1996;7(18):2247–53.

    Article  CAS  PubMed  Google Scholar 

  13. Kovacik A, Kopecna M, Vavrova K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv. 2020;17(2):145–55.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang T, Xu G, Chen G, Zheng Y, He B, Gu Z. Progress in transdermal drug delivery systems for cancer therapy. Nano Res. 2020;13(7):1810–24.

    Article  CAS  Google Scholar 

  15. Yadavar-Nikravesh M-S, Ahmadi S, Milani A, Akbarzadeh I, Khoobi M, Vahabpour R, et al. Construction and characterization of a novel Tenofovir-loaded PEGylated niosome conjugated with TAT peptide for evaluation of its cytotoxicity and anti-HIV effects. Adv Powder Technol. 2021;32(9):3161–73.

    Article  CAS  Google Scholar 

  16. Jiang T, Ma S, Shen Y, Li Y, Pan R, Xing H. Topical anesthetic and pain relief using penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers. Drug Deliv. 2021;28(1):478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A N, Kovooru L, Behera AK, Kumar KPP, Srivastava P. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv Colloid Interface Sci. 2021;287:102318.

  18. Simon J, Jouanmiqueou B, Rols M-P, Flahaut E, Golzio M. Transdermal Delivery of Macromolecules Using Two-in-One Nanocomposite Device for Skin Electroporation. Pharmaceutics. 2021;13(11):1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang X, Chen G, Liu Y, Sun L, Sun L, Zhao Y. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano. 2020;14(5):5901–8.

    Article  CAS  PubMed  Google Scholar 

  20. Zhi D, Yang T, Zhang T, Yang M, Zhang S, Donnelly RF. Microneedles for gene and drug delivery in skin cancer therapy. J Control Release. 2021;335:158–77.

    Article  CAS  PubMed  Google Scholar 

  21. Duarah S, Sharma M, Wen J. Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. Eur J Pharm Biopharm. 2019;136:48–69.

    Article  CAS  PubMed  Google Scholar 

  22. Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig. 2021:1–15.

  23. Zhang Y, Feng P, Yu J, Yang J, Zhao J, Wang J, et al. ROS-responsive microneedle patch for acne vulgaris treatment. Advanced Therapeutics. 2018;1(3):1800035.

    Article  Google Scholar 

  24. Qin M, Du G, Sun X. Recent advances in the noninvasive delivery of mRNA. Acc Chem Res. 2021;54(23):4262–71.

    Article  CAS  PubMed  Google Scholar 

  25. Tavernier G, Wolfrum K, Demeester J, De Smedt SC, Adjaye J, Rejman J. Activation of pluripotency-associated genes in mouse embryonic fibroblasts by non-viral transfection with in vitro-derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc. Biomaterials. 2012;33(2):412–7.

    Article  CAS  PubMed  Google Scholar 

  26. Mastrobattista E, Hennink WE, Schiffelers RM. Delivery of nucleic acids. Pharm Res. 2007;24(8):1561–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Golombek S, Pilz M, Steinle H, Kochba E, Levin Y, Lunter D, et al. Intradermal delivery of synthetic mRNA using hollow microneedles for efficient and rapid production of exogenous proteins in skin. Molecular Therapy - Nucleic Acids. 2018;11:382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koh KJ, Liu Y, Lim SH, Loh XJ, Kang L, Lim CY, et al. Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Scientific Reports. 2018;8(1).

  29. Dul M, Stefanidou M, Porta P, Serve J, O’Mahony C, Malissen B, et al. Hydrodynamic gene delivery in human skin using a hollow microneedle device. J Control Release. 2017;265:120–31.

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Han Y, Yu X, Liang L, Chang H, Yeo DC, et al. Upconversion nanoparticle powered microneedle patches for transdermal delivery of siRNA. Adv Healthc Mater. 2020;9(2): e1900635.

    Article  PubMed  Google Scholar 

  31. Wang Z, Luan J, Seth A, Liu L, You M, Gupta P, et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat Biomed Eng. 2021;5(1):64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Lu H, Wang Y, Yang S, Zhang Y, Wei W, et al. Interstitial fluid biomarkers’ minimally invasive monitoring using microneedle sensor arrays. Anal Chem. 2022;94(2):968–74.

    Article  CAS  PubMed  Google Scholar 

  33. Picanco-Castro V, Pereira CG, Covas DT, Porto GS, Athanassiadou A, Figueiredo ML. Emerging patent landscape for non-viral vectors used for gene therapy. Nat Biotechnol. 2020;38(2):151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi HP, Xue T, Yang Y, Jiang CY, Huang SX, Yang Q, et al. Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease. Science Advances. 2020;6(25):eaaz3621.

  35. Yiu G, Chung SH, Mollhoff IN, Nguyen UT, Thomasy SM, Yoo J, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol Ther Methods Clin Dev. 2020;16:179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chung SH, Mollhoff IN, Mishra A, Sin TN, Ngo T, Ciulla T, et al. Host immune responses after suprachoroidal delivery of AAV8 in nonhuman primate eyes. Hum Gene Ther. 2021;32(13–14):682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. J Control Release. 2022;343:600–19.

    Article  CAS  PubMed  Google Scholar 

  38. Cao X, Wang J, Deng W, Chen J, Wang Y, Zhou J, et al. Photoluminescent cationic carbon dots as efficient non-viral delivery of plasmid SOX9 and chondrogenesis of fibroblasts. Sci Rep. 2018;8(1):7057.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev. 2020;156:4–22.

    Article  CAS  PubMed  Google Scholar 

  40. Qiu Y, Guo L, Zhang S, Xu B, Gao Y, Hu Y, et al. DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN. Drug Deliv. 2016;23(7):2391–8.

    Article  CAS  PubMed  Google Scholar 

  41. Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release. 2020;325:249–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tomono T. A new way to control the internal structure of microneedles: a case of chitosan lactate. Materials Today Chemistry. 2019;13:79–87.

    Article  CAS  Google Scholar 

  43. Iqbal S, Zhao Z. Poly (beta amino esters) Copolymers: novel potential vectors for delivery of genes and related therapeutics. Int J Pharm. 2021:121289.

  44. Qu M, Kim HJ, Zhou X, Wang C, Jiang X, Zhu J, et al. Biodegradable microneedle patch for transdermal gene delivery. Nanoscale. 2020;12(32):16724–9.

    Article  CAS  PubMed  Google Scholar 

  45. Pan J, Ruan W, Qin M, Long Y, Wan T, Yu K, et al. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep. 2018;8(1):1117.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li X, Xu Q, Wang J, Zhang P, Wang Y, Ji J. A gene-coated microneedle patch based on industrialized ultrasonic spraying technology with a polycation vector to improve antitumor efficacy. J Mater Chem B. 2021;9(27):5528–36.

    Article  CAS  PubMed  Google Scholar 

  47. Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mavilio F, Ferrari S, Di Nunzio F, Maruggi G, Bonini C, Capurro S, et al. Correction of laminin-5-deficient junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. A Phase-I Clinical Trial Molecular Therapy. 2006;13:S280.

    Google Scholar 

  49. Zhu Y, Li Y, Bai B, Fang J, Zhang K, Yin X, et al. Construction of an attenuated goatpox virus AV41 strain by deleting the TK gene and ORF8-18. Antiviral Res. 2018;157:111–9.

    Article  CAS  PubMed  Google Scholar 

  50. Wan T, Pan Q, Ping Y. Microneedle-assisted genome editing: A transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Science Advances. 2021;7(11): eabe2888.

  51. Ruan W, Zhai Y, Yu K, Wu C, Xu Y. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int J Pharm. 2018;553(1–2):298–309.

    Article  CAS  PubMed  Google Scholar 

  52. Ohn J, Jang M, Kang BM, Yang H, Hong JT, Kim KH, et al. Dissolving candlelit microneedle for chronic inflammatory skin diseases. Adv Sci (Weinh). 2021;8(14):2004873.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang N, Zhou X, Liu L, Zhao L, Xie H, Yang Z. Dissolving polymer microneedles for transdermal delivery of insulin. Front Pharmacol. 2021;12: 719905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi H, Zhou J, Wang Y, Zhu Y, Lin D, Lei L, et al. A rapid corneal healing microneedle for efficient ocular drug delivery. Small. 2021:2104657.

  55. Garcia-Souto F, Lorente-Lavirgen AI, Bernabeu-Wittel J, Rojas C, Lorente R. Long-lasting contact dermatitis in patients with atopic dermatitis or psoriasis. Australas J Dermatol. 2020;61(4):342–5.

    Article  PubMed  Google Scholar 

  56. Sevilla LM, Bigas J, Chiner-Oms A, Comas I, Sentandreu V, Perez P. Glucocorticoid-dependent transcription in skin requires epidermal expression of the glucocorticoid receptor and is modulated by the mineralocorticoid receptor. Sci Rep. 2020;10(1):18954.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ciazynska M, Bednarski IA, Wodz K, Narbutt J, Lesiak A. NLRP1 and NLRP3 inflammasomes as a new approach to skin carcinogenesis. Oncol Lett. 2020;19(3):1649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang D, Duncan B, Li X, Shi J. The role of NLRP3 inflammasome in infection-related, immune-mediated and autoimmune skin diseases. J Dermatol Sci. 2020;98(3):146–51.

    Article  CAS  PubMed  Google Scholar 

  59. Wu X, Huang H, Yu B, Zhang J. A blue light-inducible CRISPR-Cas9 system for inhibiting progression of melanoma cells. Front Mol Biosci. 2020;7: 606593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang CD, Chen YH, Huang HY, Huang HD, Tseng CP. CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication. Mol Microbiol. 2014;92(5):1072–91.

    Article  CAS  PubMed  Google Scholar 

  61. Lan X, Zhu W, Huang X, Yu Y, Xiao H, Jin L, et al. Microneedles loaded with anti-PD-1-cisplatin nanoparticles for synergistic cancer immuno-chemotherapy. Nanoscale. 2020;12(36):18885–98.

    Article  CAS  PubMed  Google Scholar 

  62. Sajadimajd S, Bahramsoltani R, Iranpanah A, Kumar Patra J, Das G, Gouda S, et al. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol Res. 2020;151: 104584.

    Article  CAS  PubMed  Google Scholar 

  63. Shaw FM, Weinstock MA. Comparing topical treatments for basal cell carcinoma. J Invest Dermatol. 2018;138(3):484–6.

    Article  CAS  PubMed  Google Scholar 

  64. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, et al. Melanoma. The Lancet. 2018;392(10151):971–84.

    Article  Google Scholar 

  65. Kiyohara T, Nagano N, Miyamoto M, Shijimaya T, Nakamaru S, Makimura K, et al. BRAF-mutated, acral verrucous melanoma successfully treated by dabrafenib plus trametinib combination therapy. Clin Exp Dermatol. 2019;44(8):945–6.

    Article  CAS  PubMed  Google Scholar 

  66. Xue L, Yan Y, Kos P, Chen X, Siegwart DJ. PEI fluorination reduces toxicity and promotes liver-targeted siRNA delivery. Drug Deliv Transl Res. 2021;11(1):255–60.

    Article  CAS  PubMed  Google Scholar 

  67. Li X, Xu Q, Zhang P, Zhao X, Wang Y. Cutaneous microenvironment responsive microneedle patch for rapid gene release to treat subdermal tumor. J Control Release. 2019;314:72–80.

    Article  CAS  PubMed  Google Scholar 

  68. Amani H, Shahbazi MA, D’Amico C, Fontana F, Abbaszadeh S, Santos HA. Microneedles for painless transdermal immunotherapeutic applications. J Control Release. 2021;330:185–217.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang S, Zhao S, Jin X, Wang B, Zhao G. Microneedles Improve the Immunogenicity of DNA Vaccines. Hum Gene Ther. 2018;29(9):1004–10.

    Article  CAS  PubMed  Google Scholar 

  70. McCaffrey J, Donnelly RF, McCarthy HO. Microneedles: an innovative platform for gene delivery. Drug Deliv Transl Res. 2015;5(4):424–37.

    Article  CAS  PubMed  Google Scholar 

  71. Kim NW, Lee MS, Kim KR, Lee JE, Lee K, Park JS, et al. Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. J Control Release. 2014;179:11–7.

    Article  CAS  PubMed  Google Scholar 

  72. Cole G, McCaffrey J, Ali AA, McBride JW, McCrudden CM, Vincente-Perez EM, et al. Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation. Hum Vaccin Immunother. 2017;13(1):50–62.

    Article  PubMed  Google Scholar 

  73. Duong HTT, Kim NW, Thambi T, Giang Phan VH, Lee MS, Yin Y, et al. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. J Control Release. 2018;269:225–34.

    Article  CAS  PubMed  Google Scholar 

  74. Leone M, Romeijn S, Slutter B, O’Mahony C, Kersten G, Bouwstra JA. Hyaluronan molecular weight: Effects on dissolution time of dissolving microneedles in the skin and on immunogenicity of antigen. Eur J Pharm Sci. 2020;146: 105269.

    Article  CAS  PubMed  Google Scholar 

  75. Du G, Hathout RM, Nasr M, Nejadnik MR, Tu J, Koning RI, et al. Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J Control Release. 2017;266:109–18.

    Article  CAS  PubMed  Google Scholar 

  76. Ali AA, McCrudden CM, McCaffrey J, McBride JW, Cole G, Dunne NJ, et al. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomedicine. 2017;13(3):921–32.

    Article  CAS  PubMed  Google Scholar 

  77. Yan Q, Cheng Z, Liu H, Shan W, Cheng Z, Dai X, et al. Enhancement of Ag85B DNA vaccine immunogenicity against tuberculosis by dissolving microneedles in mice. Vaccine. 2018;36(30):4471–6.

    Article  CAS  PubMed  Google Scholar 

  78. Hu Y, Xu B, Xu J, Shou D, Liu E, Gao J, et al. Microneedle-assisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polym Chem. 2015;6(3):373–9.

    Article  CAS  Google Scholar 

  79. Inoue M, Lorenz M, Muto H, Wesch R, Hashimoto Y. Effect of a single dose of insulin glargine/lixisenatide fixed ratio combination (iGlarLixi) on postprandial glucodynamic response in Japanese patients with type 2 diabetes mellitus: A phase I randomized trial. Diabetes Obes Metab. 2019;21(8):2001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu S, Zhang B, Wang Y, He Y, Qian G, Deng L, et al. A bilayer microneedle for therapeutic peptide delivery towards the treatment of diabetes in db/db mice. Journal of Drug Delivery Science and Technology. 2021;62: 102336.

    Article  CAS  Google Scholar 

  81. Chen X, Yu H, Wang L, Shen D, Li C, Zhou W. Cross-linking-density-changeable microneedle patch prepared from a glucose-responsive hydrogel for insulin delivery. ACS Biomater Sci Eng. 2021;7(10):4870–82.

    Article  CAS  PubMed  Google Scholar 

  82. Hong C, Zhang G, Zhang W, Liu J, Zhang J, Chen Y, et al. Hair grows hair: Dual-effective hair regrowth through a hair enhanced dissolvable microneedle patch cooperated with the pure yellow light irradiation. Appl Mater Today. 2021;25: 101188.

    Article  Google Scholar 

  83. Yang G, Chen Q, Wen D, Chen Z, Wang J, Chen G, et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano. 2019;13(4):4354–60.

    Article  CAS  PubMed  Google Scholar 

  84. Cui M, Zheng M, Wiraja C, Chew SWT, Mishra A, Mayandi V, et al. Ocular delivery of predatory bacteria with cryomicroneedles against eye infection. Adv Sci (Weinh). 2021;8(21): e2102327.

    Article  Google Scholar 

  85. Wu Y, Vora LK, Wang Y, Adrianto MF, Tekko IA, Waite D, et al. Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye. Eur J Pharm Biopharm. 2021;165:306–18.

    Article  CAS  PubMed  Google Scholar 

  86. Zhao J, Xu G, Yao X, Zhou H, Lyu B, Pei S, et al. Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Delivery and Translational Research. 2021.

  87. Arya J, Henry S, Kalluri H, McAllister DV, Pewin WP, Prausnitz MR. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017;128:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vrdoljak A, Allen EA, Ferrara F, Temperton NJ, Crean AM, Moore AC. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J Control Release. 2016;225:192–204.

    Article  CAS  PubMed  Google Scholar 

  89. Kalluri H, Choi S-O, Guo XD, Lee JW, Norman J, Prausnitz MR. Evaluation of microneedles in human subjects. percutaneous penetration enhancers physical methods in penetration enhancement 2017. p. 325–40.

  90. Donnelly RF, Majithiya R, Singh TR, Morrow DI, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57.

    Article  CAS  PubMed  Google Scholar 

  91. O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdevices. 2014;16(3):333–43.

    Article  CAS  PubMed  Google Scholar 

  92. Troy SB, Kouiavskaia D, Siik J, Kochba E, Beydoun H, Mirochnitchenko O, et al. Comparison of the immunogenicity of various booster doses of inactivated polio vaccine delivered intradermally versus intramuscularly to HIV-infected adults. J Infect Dis. 2015;211(12):1969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shu W, Heimark H, Bertollo N, Tobin DJ, O’Cearbhaill ED, Annaidh AN. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method. Acta Biomater. 2021;135:403–13.

    Article  CAS  PubMed  Google Scholar 

  94. Sheng T, Luo B, Zhang W, Ge X, Yu J, Zhang Y, et al. Microneedle-mediated vaccination: innovation and translation. Adv Drug Deliv Rev. 2021;179: 113919.

    Article  CAS  PubMed  Google Scholar 

  95. Lee JW, Choi S-O, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;7(4):531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vicente-Perez EM, Quinn HL, McAlister E, O’Neill S, Hanna LA, Barry JG, et al. The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo. Pharm Res. 2016;33(12):3072–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol. 2012;64(1):11–29.

    Article  CAS  PubMed  Google Scholar 

  98. D.V. McAllister PMW, S.P. Davis, J. Park, P.J. Canatella, M.G. Allen,, Prausnitz MR. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Nat Acad Sci. 2003;100:13755–60.

  99. Richter-Johnson J, Kumar P, Choonara YE, du Toit LC, Pillay V. Therapeutic applications and pharmacoeconomics of microneedle technology. Expert Rev Pharmacoecon Outcomes Res. 2018;18(4):359–69.

    Article  PubMed  Google Scholar 

  100. Zhao ZM, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioengineering & Translational Medicine.10258.

  101. Cai Y, Huang S, Zhang Z, Zhang J, Zhu X, Chen X, et al. Bioinspired Rotation Microneedles for Accurate Transdermal Positioning and Ultraminimal-Invasive Biomarker Detection with Mechanical Robustness. Research (Wash D C). 2022;2022:9869734.

    CAS  Google Scholar 

  102. Pere CPP, Economidou SN, Lall G, Ziraud C, Boateng JS, Alexander BD, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018;544(2):425–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (82003670), Science & Technology Support Program of Changzhou (CJ20200075), Natural Science Foundation of Jiangsu (BK20190566), the Starting Scientific Research of Changzhou University (ZMF19020383), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX22_1449).

Author information

Authors and Affiliations

Authors

Contributions

Ting Zhu, Pengfei Cui, Jianhao Wang contributed to the conception of the work. Ting Zhu, Wenya Zhang wrote the manuscript. Pengju Jiang, Shuwen Zhou contributed significantly to analysis and manuscript preparation. Lin Qiu revised it critically for important intellectual content. Cheng Wang, Honglei Shi helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Honglei Shi, Pengfei Cui or Jianhao Wang.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Zhang, W., Jiang, P. et al. Progress in Intradermal and Transdermal Gene Therapy with Microneedles. Pharm Res 39, 2475–2486 (2022). https://doi.org/10.1007/s11095-022-03376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03376-x

Keywords

Navigation