Skip to main content

Advertisement

Log in

Optimization of Initial Drug Distribution in Spherical Capsules for Personalized Release

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objective

Customization of the rate of drug delivered based on individual patient requirements is of paramount importance in the design of drug delivery devices. Advances in manufacturing may enable multilayer drug delivery devices with different initial drug distributions in each layer. However, a robust mathematical understanding of how to optimize such capabilities is critically needed. The objective of this work is to determine the initial drug distribution needed in a spherical drug delivery device such as a capsule in order to obtain a desired drug release profile.

Methods

This optimization problem is posed as an inverse mass transfer problem, and optimization is carried out using the solution of the forward problem. Both non-erodible and erodible multilayer spheres are analyzed. Cases with polynomial forms of initial drug distribution are also analyzed. Optimization is also carried out for a case where an initial burst in drug release rate is desired, followed by a constant drug release rate.

Results

More than 60% reduction in root-mean-square deviation of the actual drug release rate from the ideal constant drug release rate is reported. Typically, the optimized initial drug distribution in these cases prevents or minimizes large drug release rate at early times, leading to a much more uniform drug release overall.

Conclusions

Results demonstrate potential for obtaining a desired drug delivery profile over time by carefully engineering the drug distribution in the drug delivery device. These results may help engineer devices that offer customized drug delivery by combining advanced manufacturing with mathematical optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

A :

Initial (erodible case) or fixed (non-erodible case) radius (m).

B :

Rate of erosion of the erodible sphere (m s−1).

c :

Concentration (mol m−3).

D :

Diffusion coefficient (m2 s−1).

J :

Order of the polynomial function.

M :

Number of layers.

M total :

Total drug amount (mol).

q a :

Actual drug release rate (mol s−1).

q d :

Desired drug release rate (mol s−1).

R :

Radius of erodible sphere as a function of time (m).

r :

Radial coordinate (m).

t :

Time (s).

λ :

Non-dimensional eigenvalue.

θ :

Non-dimensional concentration, θ = c/cref.

τ :

Non-dimensional time, τ = Dt/A2

ξ :

Non-dimensional radial coordinate, ξ = r/A

in :

Initial

ref :

Reference

m :

Layer number

References

  1. Siepmann J, Siepmann F. Mathematical modelling of drug delivery. Int J Pharm. 2008;364:328–43. https://doi.org/10.1016/j.ijpharm.2008.09.004.

    Article  CAS  PubMed  Google Scholar 

  2. Stefanini GG, Holmes DR. Drug-eluting coronary artery stents. N Engl J Med. 2013;368:254–65. https://doi.org/10.1056/NEJMra1210816.

    Article  CAS  PubMed  Google Scholar 

  3. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8. https://doi.org/10.1038/nbt.1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomolec Eng. 2010;1:149–73. https://doi.org/10.1146/annurev-chembioeng-073009-100847.

    Article  CAS  Google Scholar 

  5. Tarcha P. Polymers for controlled drug delivery. 1st ed: CRC Press; 1990.

    Google Scholar 

  6. Jain A, McGinty S, Pontrelli G, Zhou L. Theoretical model for diffusion-reaction based drug delivery from a multilayer spherical capsule. Int J Heat Mass Transf. 2022;183:122072:1-14. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122072.

    Article  CAS  Google Scholar 

  7. Laracuente M-L, Yu M, McHugh K. Zero-order drug delivery: state of the art and future prospects. J Control Release. 2020;327:834–56. https://doi.org/10.1016/j.jconrel.2020.09.020.

    Article  CAS  PubMed  Google Scholar 

  8. Bruschi ML. Mathematical models of drug release. Woodhead Publishing. 2015:63–86. https://doi.org/10.1016/B978-0-08-100092-2.00005-9.

  9. Dekyndt B, Verin J, Neut C, Siepmann F, Siepmann J. How to easily provide zero order release of freely soluble drugs from coated pellets. Int J Pharm. 2015;478:31–8. https://doi.org/10.1016/j.ijpharm.2014.10.071.

    Article  CAS  PubMed  Google Scholar 

  10. Tzafriri AR, Groothuis A, Price GS, Edelman ER. Stent elution rate determines drug deposition and receptor-mediated effects. J Control Release. 2012;161:918–26. https://doi.org/10.1016/j.jconrel.2012.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eyjolfsson, R., ‘Design and manufacture of pharmaceutical tablets,’ 1st Ed., Elsevier, 2014. ISBN: 9780128021828.

  12. Vaithiyalingam SR, Sayeed VA. Critical factors in manufacturing multi-layer tablets—assessing material attributes, in-process controls, manufacturing process and product performance. Int J Pharm. 2010;398:9–13. https://doi.org/10.1016/j.ijpharm.2010.07.025.

    Article  CAS  PubMed  Google Scholar 

  13. Abebe A, Akseli I, Sprockel O, Kottala N, Cuitiño AM. Review of bilayer tablet technology. Int J Pharm. 2014;461:549–58. https://doi.org/10.1016/j.ijpharm.2013.12.028.

    Article  CAS  PubMed  Google Scholar 

  14. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2014;527:21–30. https://doi.org/10.1016/j.ijpharm.2017.05.021.

    Article  CAS  Google Scholar 

  15. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541:101–7. https://doi.org/10.1016/j.ijpharm.2018.02.015.

    Article  CAS  PubMed  Google Scholar 

  16. Karakurt I, Aydoğdu A, Çıkrıkcı S, Orozco J, Lin L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: a controlled release study. Int J Pharm. 2020;584:119428. https://doi.org/10.1016/j.ijpharm.2020.119428.

    Article  CAS  PubMed  Google Scholar 

  17. Karalia D, Siamidi A, Karalis V, Vlachou M. 3D-printed Oral dosage forms: Mechanical properties, computational approaches and applications. Pharmaceutics. 2021;13:1401:1-37. https://doi.org/10.3390/pharmaceutics13091401.

    Article  CAS  Google Scholar 

  18. Vergnaud J-M. Controlled drug release of oral dosage forms. Boca Raton, FL: CRC Press; 2009.

    Google Scholar 

  19. Arifin DY, Lee LY, Wang C-H. Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Adv Drug Deliv Rev. 2006;58:1274–325. https://doi.org/10.1016/j.addr.2006.09.007.

    Article  CAS  PubMed  Google Scholar 

  20. Crank J. The mathematics of diffusion. 2nd ed: Oxford Science Publications; 1980.

    Google Scholar 

  21. Jain A, McGinty S, Pontrelli G, Zhou L. Theoretical modeling of endovascular drug delivery into a multilayer Arterial Wall from a drug-coated balloon. Int J Heat Mass Transf. 2022;187:122572. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122572.

    Article  Google Scholar 

  22. d’Errico M, Sammarco P, Vairo G. Analytical modeling of drug dynamics induced by eluting stents in the coronary multi-layered curved domain. Math Biosci. 2015;267:79–96. https://doi.org/10.1016/j.mbs.2015.06.016.

    Article  CAS  PubMed  Google Scholar 

  23. Jain A, McGinty S, Pontrelli G. Drug diffusion and release from a bioerodible spherical capsule. Int J Pharm. 2022;616:121442. https://doi.org/10.1016/j.ijpharm.2021.121442.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang M, Yang Z, Chow L-L, Wang C-H. Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions. J Pharm Sci. 2003;92:2040–56. https://doi.org/10.1002/jps.10463.

    Article  CAS  PubMed  Google Scholar 

  25. Harland RS, Dubernet C, Benoit J-P, Peppas NA. A model of dissolution-controlled, diffusional drug release from non-swellable polymeric microspheres. J Control Release. 1988;7:207–15. https://doi.org/10.1016/0168-3659(88)90053-3.

    Article  CAS  Google Scholar 

  26. Sundararaj SC, Thomas MV, Dziubla TD, Puleo DA. Bioerodible system for sequential release of multiple drugs. Acta Biomater. 2014;10:115–25. https://doi.org/10.1016/j.actbio.2013.09.031.

    Article  CAS  PubMed  Google Scholar 

  27. McGinty S, Pontrelli G. On the role of specific drug binding in modelling arterial eluting stents. J Math Chem. 2016;54:967–76. https://doi.org/10.1007/s10910-016-0618-7.

    Article  CAS  Google Scholar 

  28. Özişik MN. Inverse heat transfer: fundamentals and applications. 1st ed. Routledge; 2000.

    Google Scholar 

  29. Lee PI. Initial concentration distribution as a mechanism for regulating drug release from diffusion controlled and surface erosion controlled matrix systems. J Control Release. 1986;4:1–7. https://doi.org/10.1016/0168-3659(86)90027-1.

    Article  CAS  Google Scholar 

  30. Nauman EB, Patel K, Karande P. On the design and optimization of diffusion-controlled, planar delivery devices. Chem Eng Sci. 2010;65:923–30. https://doi.org/10.1016/j.ces.2009.09.043.

    Article  CAS  Google Scholar 

  31. Georgiadis MC, Kostoglou M. On the optimization of drug release from multi-laminated polymer matrix devices. J Control Release. 2001;77:273–85. https://doi.org/10.1016/s0168-3659(01)00510-7.

    Article  CAS  PubMed  Google Scholar 

  32. Lu S, Ramirez F, Anseth KS. Modeling and optimization of drug release from laminated polymer matrix devices. AICHE J. 1998;44:1689–96. https://doi.org/10.1002/aic.690440720.

    Article  CAS  Google Scholar 

  33. Larobina D, Mensitieri G, Kipper M, Narasimhan B. Mechanistic understanding of degradation in bioerodible polymers for drug delivery. AICHE J. 2002;48:2960–70. https://doi.org/10.1002/aic.690481221.

    Article  CAS  Google Scholar 

  34. Wong HM, Wang JJ, Wang CH. In vitro release of human immunoglobulin G from biodegradable microspheres. Ind Eng Chem Res. 2001;40:933–48. https://doi.org/10.1021/ie0006256.

    Article  CAS  Google Scholar 

  35. Nocedal J, Wright S Numerical optimization. Berlin/Heidelberg: Springer Science & Business Media; 2006.

  36. Boyd S, Vandenberghe L. Convex optimization. Cambridge: Cambridge University Press; 2004.

Download references

Funding

Funding from the European Research Council under the European Unions Horizon 2020 Framework Programme (No. FP/2014 \ 0552020)/ ERC Grant Agreement No. 739964 (COPMAT) is acknowledged. This work is also partially supported by Italian MIUR (PRIN 2017 project: Mathematics of active materials: from mechanobiology to smart devices, # 2017KL4EF3).

Author information

Authors and Affiliations

Authors

Contributions

A. Jain – Conceptualization, Methodology, Formal Analysis, Validation, Investigation, Data Curation, Project Administration; K. Subbarao – Formal Analysis, Validation, Investigation, Data Curation; S. McGinty – Methodology, Formal Analysis, Validation; G. Pontrelli – Methodology, Formal Analysis, Validation. All authors contributed towards Writing Original Draft, Review and Editing.

Corresponding author

Correspondence to Ankur Jain.

Ethics declarations

Conflict of Interest

The authors declare that they do not have any conflicts of interest in connection with this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 258 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Subbarao, K., McGinty, S. et al. Optimization of Initial Drug Distribution in Spherical Capsules for Personalized Release. Pharm Res 39, 2607–2620 (2022). https://doi.org/10.1007/s11095-022-03359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03359-y

Keywords

Navigation