Skip to main content
Log in

Improved Aerosolization Stability of Inhalable Tobramycin Powder Formulation by Co-Spray Drying with Colistin

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Tobramycin shows synergistic antibacterial activity with colistin and can reduce the toxic effects of colistin. The purpose of this study is to prepare pulmonary powder formulations containing both colistin and tobramycin and to assess their in vitro aerosol performance and storage stability.

Methods

The dry powder formulations were manufactured using a lab-scale spray dryer. In vitro aerosol performance was measured using a Next Generation Impactor. The storage stability of the dry powder formulations was measured at 22°C and two relative humidity levels – 20 and 55%. Colistin composition on the particle surface was measured using X-ray photoelectron spectroscopy.

Results

Two combination formulations, with 1:1 and 1:5 molar ratios of colistin and tobramycin, showed fine particle fractions (FPF) of 85%, which was significantly higher than that of the spray dried tobramycin (45%). FPF of the tobramycin formulation increased significantly when stored for four weeks at both 20% and 55% RH. In contrast, FPF values of both combination formulations and spray dried colistin remained stable at both humidity levels. Particle surface of each combination was significantly enriched in colistin molecules; 1:5 combination showed 77% by wt. colistin.

Conclusions

The superior aerosol performance and aerosolization stability of 1:1 and 1:5 combination formulations of colistin and tobramycin could be attributed to enrichment of colistin on the co-spray dried particle surface. The observed powder properties may be the result of a surfactant-like assembly of these colistin molecules during spray drying, thus forming a hydrophobic particle surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nation RL, Li J, Cars O, Couet W, Dudley MN, Kaye KS, et al. Framework for optimisation of the clinical use of colistin and polymyxin B: The prato polymyxin consensus. Lancet Infect Dis. 2015;15(2):225–34. https://doi.org/10.1016/s1473-3099(14)70850-3.

    Article  CAS  PubMed  Google Scholar 

  2. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011;55(7):3284–94. https://doi.org/10.1128/Aac.01733-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gurjar M. Colistin for lung infection: An update. J Intensive Care. 2015;3(1):1–12. https://doi.org/10.1186/s40560-015-0072-9.

    Article  Google Scholar 

  4. Yapa SWS, Li J, Patel K, Wilson JW, Dooley MJ, George J, et al. Pulmonary and systemic pharmacokinetics of inhaled and intravenous colistin methanesulfonate in cystic fibrosis patients: Targeting advantage of inhalational administration. Antimicrob Agents Chemother. 2014;58(5):2570–9. https://doi.org/10.1128/aac.01705-13.

    Article  PubMed  Google Scholar 

  5. Nang SC, Azad MAK, Velkov T, Zhou Q, Li J. Rescuing the last-line polymyxins: Achievements and challenges. Pharmacol Rev. 2021;73(2):679. https://doi.org/10.1124/pharmrev.120.000020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borghardt JM, Kloft C, Sharma A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can Respir J. 2018;2018:2732017. https://doi.org/10.1155/2018/2732017.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Velkov T, Rahim NA, Zhou QT, Chan H-K, Li J. Inhaled anti-infective chemotherapy for respiratory tract infections: Successes, challenges and the road ahead. Adv Drug Deliv Rev. 2015;85:65–82. https://doi.org/10.1016/j.addr.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  8. Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled antibiotics for gram-negative respiratory infections. Clin Microbiol Rev. 2016;29(3):581–632. https://doi.org/10.1128/cmr.00101-15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan H-K. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99. https://doi.org/10.1016/j.addr.2014.10.022.

    Article  CAS  PubMed  Google Scholar 

  10. Ahmed MU, Velkov T, Lin Y-W, Yun B, Nowell CJ, Zhou F, et al. Potential toxicity of polymyxins in human lung epithelial cells. Antimicrob Agents Chemother. 2017;61(6):e02690-e2716. https://doi.org/10.1128/AAC.02690-16.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou Q, Ahmed MU, Li J, Azad MAK. Inhalation formulations of antimicrobial compounds. World Intellectual Property Organization (Patent Cooperation Treaty) WO2022005593A1. 2022.

  12. Herrmann G, Yang L, Wu H, Song Z, Wang H, Hoiby N, et al. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis. 2010;202(10):1585–92. https://doi.org/10.1086/656788.

    Article  CAS  PubMed  Google Scholar 

  13. Kashyap S, Kaur S, Sharma P, Capalash N. Combination of colistin and tobramycin inhibits persistence of Acinetobacter baumannii by membrane hyperpolarization and down-regulation of efflux pumps. Microb Infect. 2021;23(4–5): 104795. https://doi.org/10.1016/j.micinf.2021.104795.

    Article  CAS  Google Scholar 

  14. Tappenden P, Harnan S, Uttley L, Mildred M, Carroll C, Cantrell A. Colistimethate sodium powder and tobramycin powder for inhalation for the treatment of chronic Pseudomonas aeruginosa lung infection in cystic fibrosis: Systematic review and economic model. Health Technol Assess. 2013;17(56:v-xvii):1–181. https://doi.org/10.3310/hta17560.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Riethmuller J, Herrmann G, Graepler-Mainka U, Hellwig D, Heuer HE, Heyder S, et al. Sequential inhalational tobramycin-colistin-combination in CF-patients with chronic P. aeruginosa colonization - an observational study. Cell Physiol Biochem. 2016;39(3):1141–51. https://doi.org/10.1159/000447821.

    Article  CAS  PubMed  Google Scholar 

  16. Antoniu SA, Cojocaru I. Inhaled colistin for lower respiratory tract infections. Expert Opin Drug Deliv. 2012;9(3):333–42. https://doi.org/10.1517/17425247.2012.660480.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou QT, Gengenbach T, Denman JA, Yu HH, Li J, Chan HK. Synergistic antibiotic combination powders of colistin and rifampicin provide high aerosolization efficiency and moisture protection. AAPS J. 2014;16(1):37–47. https://doi.org/10.1208/s12248-013-9537-8.

    Article  CAS  PubMed  Google Scholar 

  18. Brunaugh AD, Smyth HDC. Formulation techniques for high dose dry powders. Int J Pharm. 2018;547(1–2):489–98. https://doi.org/10.1016/j.ijpharm.2018.05.036.

    Article  CAS  PubMed  Google Scholar 

  19. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209–27. https://rc.rcjournal.com/content/50/9/1209.short.

  20. Traini D, Young PM. Delivery of antibiotics to the respiratory tract: An update. Expert Opin Drug Deliv. 2009;6(9):897–905. https://doi.org/10.1517/17425240903110710.

    Article  CAS  PubMed  Google Scholar 

  21. Lin Y-W, Wong J, Qu L, Chan H-K, Zhou QT. Powder production and particle engineering for dry powder inhaler formulations. Current Pharm Des. 2015;21(27):3902–16. https://doi.org/10.2174/1381612821666150820111134.

    Article  CAS  Google Scholar 

  22. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022. https://doi.org/10.1007/s11095-007-9475-1.

    Article  CAS  PubMed  Google Scholar 

  23. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38(7):728–46. https://doi.org/10.1016/j.jaerosci.2007.04.005.

    Article  CAS  Google Scholar 

  24. Zhou QT, Morton DAV, Heidi HY, Jacob J, Wang J, Li J, et al. Colistin powders with high aerosolisation efficiency for respiratory infection: Preparation and in vitro evaluation. J Pharm Sci. 2013;102(10):3736–47. https://doi.org/10.1002/jps.23685.

    Article  CAS  PubMed  Google Scholar 

  25. Jong T, Li J, Morton DAV, Zhou QT, Larson I. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization. J Pharm Sci. 2016;105(3):1156–63. https://doi.org/10.1016/S0022-3549(15)00189-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hassan A, Farkas D, Longest W, Hindle M. Characterization of excipient enhanced growth (EEG) tobramycin dry powder aerosol formulations. Int J Pharm. 2020;591: 120027. https://doi.org/10.1016/j.ijpharm.2020.120027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan JGY, Chan H-K, Prestidge CA, Denman JA, Young PM, Traini D. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur J Pharm Biopharm. 2013;83(2):285–92. https://doi.org/10.1016/j.ejpb.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  28. Mangal S, Park H, Zeng L, Heidi HY, Lin Y-w, Velkov T, et al. Composite particle formulations of colistin and meropenem with improved in-vitro bacterial killing and aerosolization for inhalation. Int J Pharm. 2018;548(1):443–53. https://doi.org/10.1016/j.ijpharm.2018.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mangal S, Xu R, Park H, Zemlyanov D, Shetty N, Lin Y-W, et al. Understanding the impacts of surface compositions on the in-vitro dissolution and aerosolization of co-spray-dried composite powder formulations for inhalation. Pharm Res. 2018;36(1):6. https://doi.org/10.1007/s11095-018-2527-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shetty N, Ahn P, Park H, Bhujbal S, Zemlyanov D, Cavallaro A, et al. Improved physical stability and aerosolization of inhalable amorphous ciprofloxacin powder formulations by incorporating synergistic colistin. Mol Pharm. 2018;15(9):4004–20. https://doi.org/10.1021/acs.molpharmaceut.8b00445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoppentocht M, Akkerman OW, Hagedoorn P, Frijlink HW, de Boer AH. The cyclops for pulmonary delivery of aminoglycosides; a new member of the Twincer family. Eur J Pharm Biopharm. 2015;90:8–15. https://doi.org/10.1016/j.ejpb.2015.01.012.

    Article  CAS  PubMed  Google Scholar 

  32. Hoppentocht M, Akkerman OW, Hagedoorn P, Alffenaar J-WC, van der Werf TS, Kerstjens HAM, et al. Tolerability and pharmacokinetic evaluation of inhaled dry powder tobramycin free base in non-cystic fibrosis bronchiectasis patients. PLOS ONE. 2016;11(3):e0149768. https://doi.org/10.1371/journal.pone.0149768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newhouse MT, Hirst PH, Duddu SP, Walter YH, Tarara TE, Clark AR, et al. Inhalation of a dry powder tobramycin pulmosphere formulation in healthy volunteers. Chest. 2003;124(1):360–6. https://doi.org/10.1378/chest.124.1.360.

    Article  CAS  PubMed  Google Scholar 

  34. Shetty N, Park H, Zemlyanov D, Mangal S, Bhujbal S, Zhou QT. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. Int J Pharm. 2018;544(1):222–34. https://doi.org/10.1016/j.ijpharm.2018.04.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shetty N, Zhang Y, Park H, Zemlyanov D, Shah D, He A, et al. Surface composition and aerosolization stability of an inhalable combinational powder formulation spray dried using a three-fluid nozzle. Pharm Res. 2020;37(11):1–12. https://doi.org/10.1007/s11095-020-02937-2.

    Article  CAS  Google Scholar 

  36. Blanchaert B, Huang S, Wach K, Adams E, Van Schepdael A. Assay development for aminoglycosides by HPLC with direct UV detection. J Chromatographic Sci. 2017;55(3):197–204. https://doi.org/10.1093/chromsci/bmw169.

    Article  CAS  Google Scholar 

  37. Pharmacopeia US. USP<905> Uniformity of dosage units. Rockville (MD): The United States Pharmacopeial Convention, Inc.; 2011.

    Google Scholar 

  38. Wilson S, Wilson L, Fitzpatrick LE, Brundle CR, Wilson G, Evans CA. Encyclopedia of materials characterization: Surfaces, interfaces, thin films. United Kingdom: Butterworth-Heinemann; 1992.

    Google Scholar 

  39. Woodruff DP. Modern techniques of surface science. 3rd ed. Cambridge university press; 2016.

  40. Bhujbal SV, Zemlyanov DY, Cavallaro A, Mangal S, Taylor LS, Zhou QT. Qualitative and quantitative characterization of composition heterogeneity on the surface of spray dried amorphous solid dispersion particles by an advanced surface analysis platform with high surface sensitivity and superior spatial resolution. Mol Pharm. 2018;15(5):2045–53. https://doi.org/10.1021/acs.molpharmaceut.8b00122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lavielle L, Schultz J. Surface properties of carbon fibers determined by inverse gas chromatography: Role of pretreatment. Langmuir. 1991;7(5):978–81. https://doi.org/10.1021/la00053a027.

    Article  CAS  Google Scholar 

  42. Schultz J, Lavielle L, Martin C. The role of the interface in carbon fibre-epoxy composites. J Adhesion. 1987;23(1):45–60. https://doi.org/10.1080/00218468708080469.

    Article  CAS  Google Scholar 

  43. Van Oss CJ. Acid—base interfacial interactions in aqueous media. Colloids Surf A. 1993;78:1–49. https://doi.org/10.1016/0927-7757(93)80308-2.

    Article  Google Scholar 

  44. Van Oss CJ, Good RJ, Chaudhury MK. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir. 1988;4(4):884–91. https://doi.org/10.1021/la00082a018.

    Article  Google Scholar 

  45. Shetty N, Zeng L, Mangal S, Nie H, Rowles MR, Guo R, et al. Effects of moisture-induced crystallization on the aerosol performance of spray dried amorphous ciprofloxacin powder formulations. Pharm Res. 2018;35(1):1–13. https://doi.org/10.1007/s11095-017-2281-5.

    Article  CAS  Google Scholar 

  46. Zeng XM, Martin GP, Marriott C. Particulate interactions in dry powder formulation for inhalation. 1st ed. London: CRC Press; 2001.

    Book  Google Scholar 

  47. Zhou QT, Armstrong B, Larson I, Stewart PJ, Morton DAV. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders. Eur J Pharm Sci. 2010;40(5):412–21. https://doi.org/10.1016/j.ejps.2010.04.012.

    Article  CAS  PubMed  Google Scholar 

  48. Instructions for use: TOBI Podhaler. Novartis Pharmaceutical Corporation. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/201688s008lbl.pdf. 2016.

  49. Colobreathe. European Medicines Agency. https://www.ema.europa.eu/en/medicines/human/EPAR/colobreathe. 2022. Accessed 10 July 2022.

  50. Das S, Larson I, Young P, Stewart P. Surface energy changes and their relationship with the dispersibility of salmeterol xinafoate powders for inhalation after storage at high RH. Eur J Pharm Sci. 2009;38(4):347–54. https://doi.org/10.1016/j.ejps.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  51. Kwok PCL, Tunsirikongkon A, Glover W, Chan H-K. Formation of protein nano-matrix particles with controlled surface architecture for respiratory drug delivery. Pharm Res. 2011;28(4):788–96. https://doi.org/10.1007/s11095-010-0332-2.

    Article  CAS  PubMed  Google Scholar 

  52. Adi H, Traini D, Chan HK, Young PM. The influence of drug morphology on aerosolisation efficiency of dry powder inhaler formulations. J Pharm Sci. 2008;97(7):2780–8. https://doi.org/10.1002/jps.21195.

    Article  CAS  PubMed  Google Scholar 

  53. Wallace SJ, Li J, Nation RL, Prankerd RJ, Velkov T, Boyd BJ. Self-assembly behavior of colistin and its prodrug colistin methanesulfonate: Implications for solution stability and solubilization. J Phys Chem B. 2010;114(14):4836–40. https://doi.org/10.1021/jp100458x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mestres C, Alsina MA, Busquets MA, Murányi I, Reig F. Interaction of colistin with lipids in liposomes and monolayers. Int J Pharm. 1998;160(1):99–107. https://doi.org/10.1016/s0378-5173(97)00301-3.

    Article  CAS  Google Scholar 

  55. Li L, Sun S, Parumasivam T, Denman JA, Gengenbach T, Tang P, et al. L-leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders. Eur J Pharm Biopharm. 2016;102:132–41. https://doi.org/10.1016/j.ejpb.2016.02.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institute of Health under Award Numbers R01AI132681 and R01AI146160. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. J.L. is an Australian National Health and Medical Research Council (NHMRC) Principal Research Fellow (APP1157909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Tony Zhou.

Ethics declarations

Conflict of Interest

MUA, MAKA, JL and QTZ are inventors of PCT/US2021/030393. JL received speaking honoraria from Genentech, Healcare, CTTQ, MedCom, Jiayou Medicine, and Aosaikang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 468 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, V., Park, H., Zemlyanov, D. et al. Improved Aerosolization Stability of Inhalable Tobramycin Powder Formulation by Co-Spray Drying with Colistin. Pharm Res 39, 2781–2799 (2022). https://doi.org/10.1007/s11095-022-03344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03344-5

KEY WORDS

Navigation