Skip to main content

Advertisement

Log in

Novel Self-Assembled Micelles With Increased Tumor Penetration and Anti-Tumor Efficiency Against Breast Cancer

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Recently, docetaxel (DTX) micelles based on retinoic acid derivative surfactants showed lower systemic toxicity and bioequivalence to polysorbate-solubilized docetaxel (Taxotere®) in a phase II clinical study. However, the poor stability of these surfactants in vitro and in vivo led to extremely harsh storage conditions with methanol, and the formed micelles were quickly disintegrated with rapid drug burst release in vivo. To further enhance the stability and accumulation in tumors of DTX micelles, a novel surfactant based on acitretin (ACMeNa) was synthesized and used to prepare DTX micelles to improve anti-tumor efficiency.

Methods

Novel micelle-forming excipients were synthesized, and the micelles were prepared using the thin film hydration technique. The targeting effect in vitro, distribution in the tumor, and its mechanism were observed. Pharmacokinetics and anti-tumor effect were further investigated in rats and tumor-bearing female mice, respectively.

Results

The DTX-micelles prepared with ACMeNa (ACM-DTX) exhibited a small size (21.9 ± 0.3 nm), 39% load efficiency, and excellent stability in vitro and in vivo. Long circulation time, sustained and steady accumulation, and strong penetration in the tumor were observed in vivo, contributing to a better anti-tumor effect and lower adverse effects.

Conclusions

The micelles formed by ACMeNa showed a better balance between anti-tumor and adverse effects. It is a promising system for delivering hydrophobic molecules for cancer therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schwartzberg LS, Navari RM. Safety of polysorbate 80 in the oncology setting. Adv Ther. 2018;35:754–67. https://doi.org/10.1007/s12325-018-0707-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ganju A, Yallapu MM, Khan S, Behrman SW, Chauhan SC, Jaggi M. Nanoways to overcome docetaxel resistance in prostate cancer. Drug Resist Updat. 2014;17:13–23. https://doi.org/10.1016/j.drup.2014.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ghamkhari A, Pouyafar A, Salehi R, Rahbarghazi R. Chrysin and docetaxel loaded biodegradable micelle for combination chemotherapy of cancer stem cell. Pharm Res. 2019;36:165–78. https://doi.org/10.1007/s11095-019-2694-4.

    Article  CAS  PubMed  Google Scholar 

  4. Feng L, Mumper RJ. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett. 2013;334:157–75. https://doi.org/10.1016/j.canlet.2012.07.006.

    Article  CAS  PubMed  Google Scholar 

  5. Hennenfent KL, Govindan R. Novel formulations of taxanes: a review. Old wine in a new bottle? Ann Oncol. 2006;17:735–49. https://doi.org/10.1093/annonc/mdj100.

  6. Sohail MF, Rehman M, Sarwar HS, Naveed S, Qureshi OS, Bukhari NI, et al. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomedicine. 2018;13:3145–61. https://doi.org/10.2147/ijn.s164518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deeken JF, Slack R, Weiss GJ, Ramanathan RK, Pishvaian MJ, Hwang J, et al. A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemoth Pharm. 2013;71:627–33. https://doi.org/10.1007/s00280-012-2048-y.

    Article  CAS  Google Scholar 

  8. Mahalingam D, Nemunaitis JJ, Malik L, Sarantopoulos J, Weitman S, Sankhala K, et al. Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemoth Pharm. 2014;74:1241–50. https://doi.org/10.1007/s00280-014-2602-x.

    Article  CAS  Google Scholar 

  9. Joerger M, Bjermo H, Blom P, Heldring NA. Pharmacokinetics, safety and early activity of a nanoparticle micellar formulation ofdocetaxel in women with metastatic breast cancer: results from two randomized trials (Phase I and II). J Clin Oncol. 2020;38:3526. https://doi.org/10.1200/jco.2020.38.15_suppl.3526.

    Article  Google Scholar 

  10. Wang Q, Liu Y, Pu C, Zhang H, Tan X, Gou J, et al. Drug-polymer interaction, pharmacokinetics and antitumor effect of PEG-PLA/Taxane derivative TM-2 micelles for intravenous drug delivery. Pharm Res. 2018;35:208–91. https://doi.org/10.1007/s11095-018-2477-3.

    Article  CAS  PubMed  Google Scholar 

  11. Atrafi F, van Eerden RAG, van HylckamaVlieg MAM, Oomen-de Hoop E, de Bruijn P, Lolkema MP, et al. Intratumoral comparison of nanoparticle entrapped docetaxel (CPC634) with conventional docetaxel in patients with solid tumors. Clin Cancer Res. 2020;26:3537–45. https://doi.org/10.1158/1078-0432.ccr-20-0008.

    Article  CAS  PubMed  Google Scholar 

  12. Vermunt MA, Bergman AM, der Putten EV, Beijnen JH. The intravenous to oral switch of taxanes: strategies and current clinical developments. Future Oncol. 2021;17:1379–99. https://doi.org/10.2217/fon-2020-0876.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15(4):862–71. https://doi.org/10.1208/s12249-014-0113-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11(10):4985–98. https://doi.org/10.1007/s12274-018-2152-3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. European Medicines Agency. Assessment report for Apealea, EMA/CHMP/785964/2018. 2018.p.1–121.https://www.ema.europa.eu/en/documents/assessment-report/apealea-epar-public-assessment-report_en.pdf. Accessed 25 Feb 2022.

  16. Borgå O, Lilienberg E, Bjermo H, Hansson F, Heldring N, Dediu R. Pharmacokinetics of total and unbound paclitaxel after administration of paclitaxel micellar or nab-paclitaxel: an open, randomized, cross-over, explorative study in breast cancer patients. Adv Ther. 2019;36:2825–37. https://doi.org/10.1007/s12325-019-01058-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strelchenok O, Aleksov J. Retinol derivatives, their use in the treatment of cancer and for potentiating the efficacy of other cytotoxic agents. England. Patent No.CN02829608.7. (2005–09–14).London: England.

  18. Fu PP, Cheng SH, Coop L, Xia Q, Culp SJ, Tolleson WH, et al. Photoreaction, phototoxicity, and photocarcinogenicity of retinoids. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2003;21:165–97. https://doi.org/10.1081/gnc-120026235.

    Article  CAS  PubMed  Google Scholar 

  19. Jin Y, Wu Z, Li C, Zhou W, Shaw JP, Baguley BC, et al. Optimization of weight ratio for DSPE-PEG/TPGS hybrid micelles to improve drug retention and tumor penetration. Pharm Res. 2018;35:13–28. https://doi.org/10.1007/s11095-017-2340-y.

    Article  CAS  PubMed  Google Scholar 

  20. Jung BT, Lim M, Jung K, Li M, Dong H, Dube N, et al. Designing sub-20 nm self-assembled nanocarriers for small molecule delivery: Interplay among structural geometry, assembly energetics, and cargo release kinetics. J Control Release. 2020;329:538–51. https://doi.org/10.1016/j.jconrel.2020.09.037.

    Article  CAS  PubMed  Google Scholar 

  21. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery.J Pharm Sci. 2003;92:1343–55. https://doi.org/10.1002/jps.10397.

  22. Zhang S, Zhao Y. Rapid release of entrapped contents from multi-functionalizable, surface cross-linked micelles upon different stimulation. J Am Chem Soc. 2010;132:10642–4. https://doi.org/10.1021/ja103391k.

    Article  CAS  PubMed  Google Scholar 

  23. He J, Cheng JJ, Wang ZF, Li CS, Wang JJ, Zhou SW, et al. Preparation method of sodium salt of N-(all trans-retinol)-L-cystathionine methyl ester. People’s Republic of China. Patent No. CN110218168A. (2019–09–10) ShangHai: China

  24. He J, Wang ZF, Zhao YZ, Liu J, Sun GH, Zhang WW, et al. Preparation method of retinol compound and sodium salt thereof. People’s Republic of China. Patent No. CN112239418A. (2021–01–19) ShangHai: China

  25. He J, Wang ZF, Zhao YZ, Yang YN, Fu QH, Bian W, et al. Phenyl-containing compound and intermediate, preparation method and application thereof. People’s Republic of China. Patent No.CN112321465A. (2021–02–05) ShangHai: China

  26. Aguiar J, Carpena P, Molina-Bolı́var JA, Carnero Ruiz C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J Colloid Interf Sci. 2003;258:116–22. https://doi.org/10.1016/s0021-9797(02)00082-6.

  27. Kumar V, Sharma N, Maitra SS. In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett. 2017;7:243–56. https://doi.org/10.1007/s40089-017-0221-3.

    Article  CAS  Google Scholar 

  28. Wieder R. TUNEL assay as a measure of chemotherapy-induced apoptosis. Methods Mol Med. 2005;111:43–54. https://doi.org/10.1385/1-59259-889-7:043.

    Article  CAS  PubMed  Google Scholar 

  29. Abu J, Batuwangala M, Herbert K, Symonds P. Retinoic acid and retinoid receptors: potential chemopreventive and therapeutic role in cervical cancer. Lancet Oncol. 2005;6:712–20. https://doi.org/10.1016/s1470-2045(05)70319-3.

    Article  CAS  PubMed  Google Scholar 

  30. Ortiz MA, Bayon Y, Lopez-Hernandez FJ, Piedrafita FJ. Retinoids in combination therapies for the treatment of cancer: mechanisms and perspectives. Drug Resist Updat. 2002;5:162–75. https://doi.org/10.1016/S1368-7646(02)00050-X.

    Article  CAS  PubMed  Google Scholar 

  31. Langridge TD, Gemeinhart RA. Toward understanding polymer micelle stability: Density ultracentrifugation offers insight into polymer micelle stability in human fluids. J Control Release. 2020;319:157–67. https://doi.org/10.1016/j.jconrel.2019.12.038.

    Article  CAS  PubMed  Google Scholar 

  32. Duan X, Yang X, Li C, Song L. Highly water-soluble methotrexate-polyethyleneglycol-rhodamine prodrug micelle for high tumor inhibition activity. AAPS PharmSciTech. 2019;20(6):245. https://doi.org/10.1208/s12249-019-1462-4.

    Article  CAS  PubMed  Google Scholar 

  33. Borga° O, Henriksson R, Bjermo H, Lilienberg E, Heldring N, Loman N. Maximum tolerated dose and pharmacokinetics of paclitaxel micellar in patients with recurrent malignant solid tumours: a dose-escalation study. Adv Ther. 2019;36:1150–63. https://doi.org/10.1007/s12325-019-00909-6.

  34. Rankovic Z. CNS Physicochemical property space shaped by a diverse set of molecules with experimentally determined exposure in the mouse brain. J Med Chem. 2017;60:5943–54. https://doi.org/10.1021/acs.jmedchem.6b01469.

    Article  CAS  PubMed  Google Scholar 

  35. Varma MVS, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53:1098–108. https://doi.org/10.1021/jm901371v.

    Article  CAS  PubMed  Google Scholar 

  36. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6:815–23. https://doi.org/10.1038/nnano.2011.166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff members of Integrated Laser Microscopy Systerm Nuclear Magnetic Resonance System at the National Facility for Protein Science in Shanghai (NFPS), Zhangjiang Lab, China for providing technical support and assistance in data collection and analysis. We also thank Mr. Zhu Zhou at Pharmacy school of Fudan University for his kindly help in data analysis.

Funding

This work was supported by the Foundation of Shanghai Science and Technology Commission (21DZ2291500), the Original Innovation Fund of Fudan University and Bio-pharmaceutical Research Project of Shanghai Science and Technology Commission (19DZ1910704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun He, Weigen Lu or Jing Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 77 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhao, Y., Liu, J. et al. Novel Self-Assembled Micelles With Increased Tumor Penetration and Anti-Tumor Efficiency Against Breast Cancer. Pharm Res 39, 2227–2246 (2022). https://doi.org/10.1007/s11095-022-03338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03338-3

Keywords

Navigation