Skip to main content

Advertisement

Log in

Ionic Liquids: Emerging Antimicrobial Agents

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Antimicrobial resistance has become a serious threat to global health. New antimicrobials are thus urgently needed. Ionic liquids (ILs), salts consisting of organic cations and anions with melting points less than 100°C, have been recently found to be promising in antimicrobial field as they may disrupt the bacterial wall and membrane and consequently lead to cell leakage and death. Different types of antimicrobial ILs are introduced in the review, including cationic, polymeric, and anionic ILs. Being the main type of the antimicrobial ILs, the review focuses on the structure and the antimicrobial mechanisms of cationic ILs. The quantitative structure-activity relationship (QSAR) models of the cationic ILs are also included. Increase in alkyl chain length and lipophilicity is beneficial to increase the antimicrobial effects of cationic ILs. Polymeric ILs are homopolymers of monomer ILs or copolymers of ILs and other monomers. They have great potential in the field of antibiotics as they provide stronger antimicrobial effects than the sum of the monomer ILs. Anionic ILs are composed of existing anionic antibiotics and organic cations, being capable to enhance the solubility and bioavailability of the original form. Nonetheless, the medical application of antimicrobial ILs is limited by the toxicity. The structural optimization aided by QSAR model and combination with existing antibiotics may provide a solution to this problem and expand the application range of ILs in antimicrobial field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMR:

Antimicrobial resistance

ATP:

Adenosine triphosphate

C. albicans :

Candida albicans

Ce6:

Chlorin e6

CMC:

Critical micelle concentration

DMPC:

Dimyristoylphosphatidylcholine

E. coli :

Escherichia coli

EC50 :

Half maximal effective concentration

IC50 :

Half maximal inhibitory concentration

ILs:

Ionic liquids

ILDs:

Ionic liquid derivatives

L. monocytogenes :

Listeria monocytogenes

LFER:

Linear free energy relationship

MIC:

Minimum inhibitory concentration

MRSA:

Methicillin-resistant S. aureus

P. aeruginosa :

Pseudomonas aeruginosa

PBS:

Phosphate-buffered saline

PILs:

Poly-(ionic liquids)

PVC:

Polyvinylchloride

QSAR:

Quantitative structure-activity relationship

S. aureus :

Staphylococcus aureus

SEDDS:

Self-emulsifying drug delivery system

S. epidermidis :

Staphylococcus epidermidis

S. mutans :

Streptococcus mutans

References

  1. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2):VMBF-0016-2015.

    Article  Google Scholar 

  2. Ogawara H. Comparison of antibiotic resistance mechanisms in antibiotic-producing and pathogenic bacteria. Molecules. 2019;24(19):3430.

    Article  CAS  PubMed Central  Google Scholar 

  3. Alves-Barroco C, Rivas-Garcia L, Fernandes AR, Baptista PV. Tackling multidrug resistance in streptococci - from novel biotherapeutic strategies to nanomedicines. Front Microbiol. 2020;11:579916.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huang W, Wu X, Qi J, Zhu Q, Wu W, Lu Y, Chen Z. Ionic liquids: green and tailor-made solvents in drug delivery. Drug Discov Today. 2020;25(5):901–8.

    Article  CAS  PubMed  Google Scholar 

  5. Simoes M, Pereira AR, Simoes LC, Cagide F, Borges F. Biofilm control by ionic liquids. Drug Discov Today. 2021;26(6):1340–6.

    Article  CAS  PubMed  Google Scholar 

  6. Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary ammonium compounds (QACs) and ionic liquids (ILs) as biocides: from simple antiseptics to tunable antimicrobials. Int J Mol Sci. 2021;22(13):6793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fallah Z, Zare EN, Khan MA, Iftekhar S, Ghomi M, Sharifi E, Tajbakhsh M, Nikfarjam N, Makvandi P, Lichtfouse E, Sillanpaa M, Varma RS. Ionic liquid-based antimicrobial materials for water treatment, air filtration, food packaging and anticorrosion coatings. Adv Colloid Interf Sci. 2021;294:102454.

    Article  CAS  Google Scholar 

  8. Lu W, Yao K, Wang J, Yuan J. Ionic liquids-water interfacial preparation of triangular Ag nanoplates and their shape-dependent antibacterial activity. J Colloid Interface Sci. 2015;437:35–41.

    Article  CAS  PubMed  Google Scholar 

  9. Murugesan B, Pandiyan N, Kasinathan K, Rajaiah A, Arumuga M, Subramanian P, Sonamuthu J, Samayanan S, Arumugam VR, Marimuthu K, Yurong C, Mahalingam S. Fabrication of heteroatom doped NFP-MWCNT and NFB-MWCNT nanocomposite from imidazolium ionic liquid functionalized MWCNT for antibiofilm and wound healing in Wistar rats: synthesis, characterization, in-vitro and in-vivo studies. Mater Sci Eng C Mater Biol Appl. 2020;111:110791.

    Article  CAS  PubMed  Google Scholar 

  10. Bhattacharya G, Giri RP, Dubey A, Mitra S, Priyadarshini R, Gupta A, Mukhopadhyay MK, Ghosh SK. Structural changes in cellular membranes induced by ionic liquids: from model to bacterial membranes. Chem Phys Lipids. 2018;215:1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Sharma VK, Ghosh SK, Mandal P, Yamada T, Shibata K, Mitra S, Mukhopadhyay R. Effects of ionic liquids on the nanoscopic dynamics and phase behaviour of a phosphatidylcholine membrane. Soft Matter. 2017;13(47):8969–79.

    Article  CAS  PubMed  Google Scholar 

  12. Mester P, Wagner M, Rossmanith P. Antimicrobial effects of short chained imidazolium-based ionic liquids-influence of anion chaotropicity. Ecotoxicol Environ Saf. 2015;111:96–101.

    Article  CAS  PubMed  Google Scholar 

  13. Garcia MT, Ribosa I, Perez L, Manresa A, Comelles F. Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids Surf B Biointerfaces. 2014;123:318–25.

    Article  CAS  PubMed  Google Scholar 

  14. Dani U, Bahadur A, Kuperkar K. Validating interfacial behaviour of surface-active ionic liquids (SAILs) with computational study integrated with biocidal and cytotoxic assessment. Ecotoxicol Environ Saf. 2019;186:109784.

    Article  CAS  PubMed  Google Scholar 

  15. Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Garcia MT. Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci. 2011;355(1):164–71.

    Article  CAS  PubMed  Google Scholar 

  16. Reddy GKK, Nancharaiah YV. Alkylimidazolium ionic liquids as antifungal alternatives: antibiofilm activity against Candida albicans and underlying mechanism of action. Front Microbiol. 2020;11:730.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Venkata Nancharaiah Y, Reddy GK, Lalithamanasa P, Venugopalan VP. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Biofouling. 2012;28(10):1141–9.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng Z, Xu Q, Guo J, Qin J, Mao H, Wang B, Yan F. Structure-antibacterial activity relationships of imidazolium-type ionic liquid monomers, poly (ionic liquids) and poly (ionic liquid) membranes: effect of alkyl chain length and cations. ACS Appl Mater Interfaces. 2016;8(20):12684–92.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia MT, Ribosa I, Perez L, Manresa A, Comelles F. Micellization and antimicrobial properties of surface-active ionic liquids containing cleavable carbonate linkages. Langmuir. 2017;33(26):6511–20.

    Article  CAS  PubMed  Google Scholar 

  20. Albalawi AH, El-Sayed WS, Aljuhani A, Almutairi SM, Rezki N, Aouad MR, Messali M. Microwave-assisted synthesis of some potential bioactive imidazolium-based room-temperature ionic liquids. Molecules. 2018;23(7):1727.

    Article  PubMed Central  Google Scholar 

  21. Florio W, Becherini S, D'Andrea F, Lupetti A, Chiappe C, Guazzelli L. Comparative evaluation of antimicrobial activity of different types of ionic liquids. Mater Sci Eng C Mater Biol Appl. 2019;104:109907.

    Article  CAS  PubMed  Google Scholar 

  22. Garcia MT, Ribosa I, Perez L, Manresa A, Comelles F. Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium- and pyridinium-based ionic liquids in aqueous solution. Langmuir. 2013;29(8):2536–45.

    Article  CAS  PubMed  Google Scholar 

  23. Qin J, Guo J, Xu Q, Zheng Z, Mao H, Yan F. Synthesis of pyrrolidinium-type poly(ionic liquid) membranes for antibacterial applications. ACS Appl Mater Interfaces. 2017;9(12):10504–11.

    Article  CAS  PubMed  Google Scholar 

  24. Saraswat J, Wani FA, Dar KI, Rizvi MMA, Patel R. Noncovalent conjugates of ionic liquid with antibacterial peptide melittin: an efficient combination against bacterial cells. ACS Omega. 2020;5(12):6376–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saraswat J, Aldahmash B, AlOmar SY, Imtiyaz K, Rizvi MMA, Patel R. Synergistic antimicrobial activity of N-methyl substituted pyrrolidinium-based ionic liquids and melittin against gram-positive and gram-negative bacteria. Appl Microbiol Biotechnol. 2020;104(24):10465–79.

    Article  CAS  PubMed  Google Scholar 

  26. Messali M. Eco-friendly synthesis of a new class of pyridinium-based ionic liquids with attractive antimicrobial activity. Molecules. 2015;20(8):14936–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borkowski A, Gutowski L, Syczewski M, Clapa T, Czerwonka G. Adaptation of bacteria Escherichia coli in presence of quaternary ammonium ionic liquids. Ecotoxicol Environ Saf. 2018;164:370–8.

    Article  CAS  PubMed  Google Scholar 

  28. Brunel F, Lautard C, Garzino F, Giorgio S, Raimundo JM, Bolla JM, Camplo M. Antibacterial activities of fluorescent nano assembled triphenylamine phosphonium ionic liquids. Bioorg Med Chem Lett. 2016;26(15):3770–3.

    Article  CAS  PubMed  Google Scholar 

  29. Brunel F, Lautard C, Garzino F, Raimundo JM, Bolla JM, Camplo M. Phosphonium-ammonium-based di-cationic ionic liquids as antibacterial over the ESKAPE group. Bioorg Med Chem Lett. 2020;30(18):127389.

    Article  CAS  PubMed  Google Scholar 

  30. O'Toole GA, Wathier M, Zegans ME, Shanks RM, Kowalski R, Grinstaff MW. Diphosphonium ionic liquids as broad-spectrum antimicrobial agents. Cornea. 2012;31(7):810–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Clapa T, Michalski J, Syguda A, Narozna D, van Oostrum P, Reimhult E. Morpholinium-based ionic liquids show antimicrobial activity against clinical isolates of Pseudomonas aeruginosa. Res Microbiol. 2021;172(3):103817.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang TH, He HX, Du JL, He ZJ, Yao S. Novel 3-methyl-2-alkylthio benzothiazolyl-based ionic liquids: synthesis, characterization, and antibiotic activity. Molecules. 2018;23(8):2011.

    Article  PubMed Central  Google Scholar 

  33. von Ah U, Wirz D, Daniels AU. Isothermal micro calorimetry--a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiol. 2009;9:106.

    Article  Google Scholar 

  34. Klobucar K, Brown ED. New potentiators of ineffective antibiotics: targeting the gram-negative outer membrane to overcome intrinsic resistance. Curr Opin Chem Biol. 2021;66:102099.

    Article  PubMed  Google Scholar 

  35. Santos MM, Alves C, Silva J, Florindo C, Costa A, Petrovski Z, Marrucho IM, Pedrosa R, Branco LC. Antimicrobial activities of highly bioavailable organic salts and ionic liquids from fluoroquinolones. Pharmaceutics. 2020;12(8):694.

    Article  CAS  PubMed Central  Google Scholar 

  36. Ghanem OB, Shah SN, Leveque JM, Mutalib MIA, El-Harbawi M, Khan AS, Alnarabiji MS, Al-Absi HRH, Ullah Z. Study of the antimicrobial activity of cyclic cation-based ionic liquids via experimental and group contribution QSAR model. Chemosphere. 2018;195:21–8.

    Article  PubMed  Google Scholar 

  37. Łuczak J, Jungnickel C, Łącka I, Stolte S, Hupka J. Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 2010;12(4):593–601.

    Article  Google Scholar 

  38. Pendleton JN, Gilmore BF. The antimicrobial potential of ionic liquids: a source of chemical diversity for infection and biofilm control. Int J Antimicrob Agents. 2015;46(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng L, Li J, Yu M, Jia W, Duan S, Cao D, Ding X, Yu B, Zhang X, Xu FJ. Molecular sizes and antibacterial performance relationships of flexible ionic liquid derivatives. J Am Chem Soc. 2020;142(47):20257–69.

    Article  CAS  PubMed  Google Scholar 

  40. Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, Boone C, Coon JJ, Hebert A, Sato TK, Landick R, Piotrowski JS. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb Cell Factories. 2016;15:17.

    Article  Google Scholar 

  41. Pernak J, Kalewska J, Ksycinska H, Cybulski J. Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group. Eur J Med Chem. 2001;36(11–12):899–907.

    Article  CAS  PubMed  Google Scholar 

  42. Montalban MG, Hidalgo JM, Collado-Gonzalez M, Diaz Banos FG, Villora G. Assessing chemical toxicity of ionic liquids on Vibrio fischeri: correlation with structure and composition. Chemosphere. 2016;155:405–14.

    Article  CAS  PubMed  Google Scholar 

  43. Cho CW, Park JS, Stolte S, Yun YS. Modelling for antimicrobial activities of ionic liquids towards Escherichia coli, Staphylococcus aureus and Candida albicans using linear free energy relationship descriptors. J Hazard Mater. 2016;311:168–75.

    Article  CAS  PubMed  Google Scholar 

  44. Poole CF, Ariyasena TC, Lenca N. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J Chromatogr A. 2013;1317:85–104.

    Article  CAS  PubMed  Google Scholar 

  45. Hodyna D, Kovalishyn V, Semenyuta I, Blagodatnyi V, Rogalsky S, Metelytsia L. Imidazolium ionic liquids as effective antiseptics and disinfectants against drug resistant S. aureus: in silico and in vitro studies. Comput Biol Chem. 2018;73:127–38.

    Article  CAS  PubMed  Google Scholar 

  46. Trush MM, Kovalishyn V, Hodyna D, Golovchenko OV, Chumachenko S, Tetko IV, Brovarets VS, Metelytsia L. In silico and in vitro studies of a number PILs as new antibacterials against MDR clinical isolate acinetobacter baumannii. Chem Biol Drug Des. 2020;95(6):624–30.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang SY, Zhuang Q, Zhang M, Wang H, Gao Z, Sun JK, Yuan J. Poly(ionic liquid) composites. Chem Soc Rev. 2020;49(6):1726–55.

    Article  CAS  PubMed  Google Scholar 

  48. Wang M, Shi J, Mao H, Sun Z, Guo S, Guo J, Yan F. Fluorescent imidazolium-type poly(ionic liquid)s for bacterial imaging and biofilm inhibition. Biomacromolecules. 2019;20(8):3161–70.

    Article  CAS  PubMed  Google Scholar 

  49. Wang C, Chen P, Qiao Y, Kang Y, Yan C, Yu Z, Wang J, He X, Wu H. pH responsive superporogen combined with PDT based on poly Ce6 ionic liquid grafted on SiO2 for combating MRSA biofilm infection. Theranostics. 2020;10(11):4795–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu X, Chang L, Peng L, Bai R, Wei Y, Ma C, Liu H. Poly(ionic liquid)-based efficient and robust antiseptic spray. ACS Appl Mater Interfaces. 2021;13(41):48358–64.

    Article  CAS  PubMed  Google Scholar 

  51. Liu W, Dong Y, Liu S, Wei T, Wu Z, Chen H. Enhancement of bactericidal activity via cyclic poly(cationic liquid) brushes. Macromol Rapid Commun. 2019;40(21):e1900379.

    Article  PubMed  Google Scholar 

  52. Xu Q, Zheng Z, Wang B, Mao H, Yan F. Zinc ion coordinated poly(Ionic Liquid) antimicrobial membranes for wound healing. ACS Appl Mater Interfaces. 2017;9(17):14656–64.

    Article  CAS  PubMed  Google Scholar 

  53. Guo J, Qian Y, Sun B, Sun Z, Chen Z, Mao H, Wang B, Yan F. Antibacterial amino acid-based poly(ionic liquid) membranes: effects of chirality, chemical bonding type, and application for MRSA skin infections. ACS Appl Bio Mater. 2019;2(10):4418–26.

    Article  CAS  PubMed  Google Scholar 

  54. Ferraz R, Silva D, Dias AR, Dias V, Santos MM, Pinheiro L, Prudencio C, Noronha JP, Petrovski Z, Branco LC. Synthesis and antibacterial activity of ionic liquids and organic salts based on penicillin G and amoxicillin hydrolysate derivatives against resistant bacteria. Pharmaceutics. 2020;12(3):221.

    Article  CAS  PubMed Central  Google Scholar 

  55. Florindo C, Araujo JM, Alves F, Matos C, Ferraz R, Prudencio C, Noronha JP, Petrovski Z, Branco L, Rebelo LP, Marrucho IM. Evaluation of solubility and partition properties of ampicillin-based ionic liquids. Int J Pharm. 2013;456(2):553–9.

    Article  CAS  PubMed  Google Scholar 

  56. Cole MR, Li M, El-Zahab B, Janes ME, Hayes D, Warner IM. Design, synthesis, and biological evaluation of beta-lactam antibiotic-based imidazolium- and pyridinium-type ionic liquids. Chem Biol Drug Des. 2011;78(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  57. Wang C, Chen P, Qiao Y, Kang Y, Guo S, Wu D, Wang J, Wu H. Bacteria-activated chlorin e6 ionic liquid based on cation and anion dual-mode antibacterial action for enhanced photodynamic efficacy. Biomater Sci. 2019;7(4):1399–410.

    Article  CAS  PubMed  Google Scholar 

  58. Irizarry L, Merlin T, Rupp J, Griffith J. Reduced susceptibility of methicillin-resistant Staphylococcus aureus to cetylpyridinium chloride and chlorhexidine. Chemotherapy. 1996;42(4):248–52.

    Article  CAS  PubMed  Google Scholar 

  59. Garcia IM, Souza VS, Souza JD, Visioli F, Leitune VCB, Scholten JD, Collares FM. Zinc-based particle with ionic liquid as a hybrid filler for dental adhesive resin. J Dent. 2020;102:103477.

    Article  CAS  PubMed  Google Scholar 

  60. Sandhu PPK, Gindri IM, Siddiqui DA, Rodrigues DC. Dicationic imidazolium-based ionic liquid coatings on zirconia surfaces: physico-chemical and biological characterization. J Funct Biomater. 2017;8(4):50.

    Article  PubMed Central  Google Scholar 

  61. Forget A, Arya N, Randriantsilefisoa R, Miessmer F, Buck M, Ahmadi V, Jonas D, Blencowe A, Shastri VP. Nonwoven carboxylated agarose-based fiber meshes with antimicrobial properties. Biomacromolecules. 2016;17(12):4021–6.

    Article  CAS  PubMed  Google Scholar 

  62. Zampino D, Mancuso M, Zaccone R, Ferreri T, Borzacchiello A, Zeppetelli S, Dattilo S, Ussia M, Ferreri L, Carbone DC, Recca G, Puglisi C. Thermo-mechanical, antimicrobial and biocompatible properties of PVC blends based on imidazolium ionic liquids. Mater Sci Eng C Mater Biol Appl. 2021;122:111920.

    Article  CAS  PubMed  Google Scholar 

  63. Pang LQ, Zhong LJ, Zhou HF, Wu XE, Chen XD. Grafting of ionic liquids on stainless steel surface for antibacterial application. Colloids Surf B Biointerfaces. 2015;126:162–8.

    Article  CAS  PubMed  Google Scholar 

  64. Yang DD, Paterna NJ, Senetra AS, Casey KR, Trieu PD, Caputo GA, Vaden TD, Carone BR. Synergistic interactions of ionic liquids and antimicrobials improve drug efficacy. iScience. 2021;24(1):101853.

    Article  CAS  PubMed  Google Scholar 

  65. Joubert F, Yeo RP, Sharples GJ, Musa OM, Hodgson DR, Cameron NR. Preparation of an antibacterial poly(ionic liquid) graft copolymer of hydroxyethyl cellulose. Biomacromolecules. 2015;16(12):3970–9.

    Article  CAS  PubMed  Google Scholar 

  66. Clarizia G, Bernardo P, Carroccio SC, Ussia M, Restuccia C, Parafati L, Calarco A, Zampino D. Heterogenized imidazolium-based ionic liquids in pebax((R))rnew. thermal, gas transport and antimicrobial properties. Polymers (Basel). 2020;12(6):1419.

    Article  CAS  PubMed Central  Google Scholar 

  67. Fojtaskova J, Koutnik I, Vrablova M, Sezimova H, Maxa M, Obalova L, Panek P. Antibacterial, antifungal and ecotoxic effects of ammonium and imidazolium ionic liquids synthesized in microwaves. Molecules. 2020;25(21):5181.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yi Lu; Literature search and data analysis: Zhezheng Fang, Xianzi Zheng; Writing - original draft preparation: Zhezheng Fang; Writing - review and editing: Lu Li, Jianping Qi, Yi Lu; Supervision: Wei Wu.

Corresponding author

Correspondence to Yi Lu.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Zheng, X., Li, L. et al. Ionic Liquids: Emerging Antimicrobial Agents. Pharm Res 39, 2391–2404 (2022). https://doi.org/10.1007/s11095-022-03336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03336-5

Keywords

Navigation