Skip to main content

Advertisement

Log in

Improved Pharmaceutical Properties of Honokiol via Salification with Meglumine: an Exception to Oft-quoted ∆pKa Rule

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Honokiol (HK), a BCS class II drug with a wide range of pharmacological activities, has poor solubility and low oral bioavailability, severely limiting its clinical application. In the current study, incorporating a water-soluble meglumine (MEG) into the crystal lattice of HK molecule was performed to improve its physicochemical properties. The binary mixture of HK and MEG was obtained by anti-solvent method and characterized by TGA, DSC, FTIR, and PXRD. The SCXRD analysis showed that two HK molecules and two MEG+ molecules were coupled in each unit cell via the ionic interaction along with intermolecular hydrogen bonds, suggesting the formation of a salt, which was further confirmed by the XPS measurements. However, the ∆pKa value between HK and MEG was found to be less than 1, which did not follow the oft-quoted ∆pKa rule for salt formation. After salification with MEG, the solubility and dissolution rate of HK exhibited 3.50 and 25.33 times improvement than crystalline HK, respectively. Simultaneously, the powder flowability, tabletability and stability of HK-MEG salt was also significantly enhanced, and the salt was not more hygroscopic, and that salt formation did not compromise processability in that regard. Further, in vivo pharmacokinetic study showed that Cmax and AUC0-t of HK-MEG salt were enhanced by 2.92-fold and 2.01-fold compared to those of HK, respectively, indicating a considerable improvement in HK oral bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

APIs:

Active pharmaceutical ingredients

BCS:

Biopharmaceutics classification system

CCDC:

Cambridge Crystallographic Data Centre

CMC-Na:

Sodium carboxymethyl cellulose

DSC:

Differential scanning calorimetry

FTIR:

Fourier transform infrared spectroscopy

HK:

Honokiol

IDR:

Intrinsic dissolution rate

IS:

Internal standard

MEG:

Meglumine

PXRD:

Powder X-ray diffraction

SCXRD:

Single crystal X-ray diffraction

SVS:

Static vapor sorption

TGA:

Thermogravimetric analysis

XPS:

X-ray photoelectron spectroscopy

References

  1. Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP. Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med. 2012;12(10):1244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cho JH, Jeon YJ, Park SM, Shin JC, Lee TH, Jung S, et al. Multifunctional effects of honokiol as an anti-inflammatory and anti-cancer drug in human oral squamous cancer cells and xenograft. Biomaterials. 2015;53:274–84.

    Article  CAS  PubMed  Google Scholar 

  3. Amorati R, Zotova J, Baschieri A, Valgimigli L. Antioxidant activity of magnolol and honokiol: kinetic and mechanistic investigations of their reaction with peroxyl radicals. J Org Chem. 2015;80(21):10651–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hsiao YP, Chen HT, Liang YC, Wang TE, Huang KH, Hsu CC, et al. Development of nanosome-encapsulated honokiol for intravenous therapy against experimental autoimmune encephalomyelitis. Int J Nanomedicine. 2020;15:17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rauf A, Patel S, Imran M, Maalik A, Arshad MU, Saeed F, et al. Honokiol: an anticancer lignan. Biomed Pharmacother. 2018;107:555–62.

    Article  CAS  PubMed  Google Scholar 

  6. Godugu C, Doddapaneni R, Singh M. Honokiol nanomicellar formulation produced increased oral bioavailability and anticancer effects in triple negative breast cancer (TNBC). Colloid Surface B. 2017;153:208–19.

    Article  CAS  Google Scholar 

  7. Ong CP, Lee WL, Tang YQ, Yap WH. Honokiol: a review of its anticancer potential and mechanisms. Cancers. 2020;12(1):48.

    Article  CAS  Google Scholar 

  8. Watanabe K, Watanabe HY, Goto Y, Yamamoto N, Yoshizaki M. Studies on the active principles of magnolia bark. Centrally acting muscle relaxant activity of magnolol and honokiol. Jpn J Pharmacol. 1975;25(5):605–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sheng YL, Xu JH, Shi CH, Li W, Xu HY, Li N, et al. UPLC-MS/MS-ESI assay for simultaneous determination of magnolol and honokiol in rat plasma: application to pharmacokinetic study after administration emulsion of the isomer. J Ethnopharmacol. 2014;155(3):1568–74.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng YZ, Zheng SP, Teng Y, Muftuoglu Y, Zhao CJ, Chen S, et al. Preparation of honokiol with biodegradable nanoparticles for treatment of osteosarcoma. RSC Adv. 2016;6(96):94278–86.

    Article  CAS  Google Scholar 

  11. Tang P, Sun Q, Yang H, Tang B, Pu H, Li H. Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int J Pharm. 2018;545(1-2):74–83.

    Article  CAS  PubMed  Google Scholar 

  12. Lu X, Lu X, Zhang Z, Lv H. Preparation and characterization of honokiol nanosuspensions and preliminary evaluation of anti-inflammatory effect. AAPS PharmSciTech. 2020;21(2):62.

    Article  CAS  PubMed  Google Scholar 

  13. Wang XH, Cai LL, Zhang XY, Deng LY, Zheng H, Deng CY, et al. Improved solubility and pharmacokinetics of PEGylated liposomal honokiol and human plasma protein binding ability of honokiol. Int J Pharm. 2011;410(1-2):169–74.

    Article  CAS  PubMed  Google Scholar 

  14. Han M, Yu X, Guo Y, Wang Y, Kuang H, Wang X. Honokiol nanosuspensions: preparation, increased oral bioavailability and dramatically enhanced biodistribution in the cardio-cerebro-vascular system. Colloids Surf B Biointerfaces. 2014;116:114–20.

    Article  CAS  PubMed  Google Scholar 

  15. Song Z, Sun J, Deng P, Zhou F, Xu H, Wen Y, et al. Oligochitosan-pluronic 127 conjugate for delivery of honokiol. Artif Cells Nanomed Biotechnol. 2018;46(sup1):740–50.

    Article  CAS  PubMed  Google Scholar 

  16. Nangia AK, Desiraju GR. Crystal engineering: an outlook for the future. Angew Chem Int Edit. 2019;58(13):4100–7.

    Article  CAS  Google Scholar 

  17. Thakuria R, Sarma B. Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: a crystal engineering approach. Crystals. 2018;8(2):101.

    Article  Google Scholar 

  18. Rajput L, Banik M, Yarava JR, Joseph S, Pandey MK, Nishiyama Y, et al. Exploring the salt-cocrystal continuum with solid-state NMR using natural-abundance samples: implications for crystal engineering. IUCRJ. 2017;4(4):466–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tothadi S, Shaikh TR, Gupta S, Dandela R, Vinod CP, Nangia AK. Can we identify the salt-cocrystal continuum state using XPS? Cryst Growth Des. 2021;21(2):735–47.

    Article  CAS  Google Scholar 

  20. Kumar S, Nanda A. Pharmaceutical cocrystals: an overview. Indian J Pharm Sci. 2017;79(6):858–71.

    Article  Google Scholar 

  21. Regulatory classification of pharmaceutical co-crystals guidance for industry. Food and Drug Administration. 2018. https://www.fda.gov/media/81824/download

  22. Cao X, Deng WW, Fu M, Wang L, Tong SS, Wei YW, et al. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles. Int J Nanomedicine. 2012;7:753–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Flexser LA, Hammett LP, Dingwall A. The determination of ionization by ultraviolet spectrophotometry: its validity and its application to the measurement of the strength of very weak bases. J Am Chem Soc. 1935;57(11):2103–15.

    Article  CAS  Google Scholar 

  24. Qiang Z, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 2004;38(12):2874–90.

    Article  CAS  PubMed  Google Scholar 

  25. Vikas GR, Ravikumar DG, Vilas BG. Development of naproxen co-crystal formation: an efficient approach to enhance aqueous solubility. Anal Chem Lett. 2015;5(4):229–38.

    Article  Google Scholar 

  26. Sun C, Grant DJ. Influence of crystal shape on the tableting performance of L-lysine monohydrochloride dihydrate. J Pharm Sci. 2001;90(5):569–79.

    Article  CAS  PubMed  Google Scholar 

  27. Yohannes B, Abebe A. Determination of tensile strength of shaped tablets. Powder Technol. 2021;383:11–8.

    Article  CAS  Google Scholar 

  28. Rudy B, Matthieu L, Jean-Emmanuel A. Comparison of the saturated salt solution and the dynamic vapor sorption techniques based on the measured sorption isotherm of barley straw. Constr Build Mater. 2017;141:140–51.

    Article  Google Scholar 

  29. Piao H, Chen LB, Kiryu Y, Ohsawa I, Takahashi J. Influence of water absorption and temperature on the mechanical properties of discontinuous carbon fiber reinforced polyamide 6. Fiber Polym. 2019;20(3):611–9.

    Article  CAS  Google Scholar 

  30. Ono N, Hirayama F, Arima H, Uekama K. Analysis of the phase solubility diagram of a phenacetin/competitor/beta-cyclodextrin ternary system, involving competitive inclusion complexation. Chem Pharm Bull (Tokyo). 2001;49(1):78–81.

    Article  CAS  PubMed  Google Scholar 

  31. Alleso M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen-cimetidine mixtures prepared by mechanical activation. J Control Release. 2009;136(1):45–53.

    Article  PubMed  Google Scholar 

  32. Fullmer MJ, Haltiwanger RC, Troupe N, Eggleston DS. Honokiol. Acta Crystallogr C. 1994;50:1966–7.

    Article  Google Scholar 

  33. Nauha E, Bernstein J. “Predicting” crystal forms of pharmaceuticals using hydrogen bond propensities: two test cases. Cryst Growth Des. 2014;14(9):4364–70.

    Article  CAS  Google Scholar 

  34. Xu C, Tang Y, Hu W, Tian R, Jia Y, Deng P, et al. Investigation of inclusion complex of honokiol with sulfobutyl ether-beta-cyclodextrin. Carbohydr Polym. 2014;113:9–15.

    Article  CAS  PubMed  Google Scholar 

  35. Gupta P, Bansal AK. Spray drying for generation of a ternary amorphous system of celecoxib, PVP, and meglumine. Pharm Dev Technol. 2005;10(2):273–81.

    Article  CAS  PubMed  Google Scholar 

  36. Wu WW, Xue W. Evaluation of anticancer activity of honokiol by complexation with hydroxypropyl-β-cyclodextrin. Colloids Surf, B. 2020;196:111298.

    Article  CAS  Google Scholar 

  37. Bazeed AY, Essa EA, Nouh A, El Maghraby GM. Co-processing of nateglinide with meglumine for enhanced dissolution rate: in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2020;46(10):1676–83.

    Article  CAS  PubMed  Google Scholar 

  38. Wu W, Wang L, Wang L, Zu Y, Wang S, Liu P, et al. Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells. Int J Nanomedicine. 2018;13:5469–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Basavaraj S, Sihorkar V, Kumar TRS, Sundaramurthi P, Srinivas NR, Venkatesh P, et al. Bioavailability enhancement of poorly water soluble and weakly acidic new chemical entity with 2-hydroxy propyl-beta-cyclodextrin: selection of meglumine, a polyhydroxy base, as a novel ternary component. Pharm Dev Technol. 2006;11(4):443–51.

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, Zhou L, Zhang F. Reactive melt extrusion to improve the dissolution performance and physical stability of naproxen amorphous solid dispersions. Mol Pharm. 2017;14(3):658–73.

    Article  PubMed  Google Scholar 

  41. Stevens JS, Byard SJ, Seaton CC, Sadiq G, Davey RJ, Schroeder SL. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes. Phys Chem Chem Phys. 2014;16(3):1150–60.

    Article  CAS  PubMed  Google Scholar 

  42. Liu HX, Yang GL, Wang DX, Sun SF, Ma JJ. Determination of dissociation constants of complicated compounds by capillary zone electrophoresis. Chinese J Chem. 2001;19(7):675–80.

    Article  CAS  Google Scholar 

  43. Degot P, Funkner D, Huber V, Koglmaier M, Touraud D, Kunz W. Extraction of curcumin from Curcuma longa using meglumine and pyroglutamic acid, respectively, as solubilizer and hydrotrope. J Mol Liq. 2021;334:116478.

    Article  CAS  Google Scholar 

  44. Ramon G, Davies K, Nassimbeni LR. Structures of benzoic acids with substituted pyridines and quinolines: salt versus co-crystal formation. Crystengcomm. 2014;16(26):5802–10.

    Article  CAS  Google Scholar 

  45. Yousaf AM, Kim DW, Kim JK, Kim JO, Yong CS, Choi HG. Novel fenofibrate-loaded gelatin microcapsules with enhanced solubility and excellent flowability: preparation and physicochemical characterization. Powder Technol. 2015;275:257–62.

    Article  CAS  Google Scholar 

  46. Skelbaek-Pedersen A, Vilhelmsen T, Wallaert V, Rantanen J. Quantification of fragmentation of pharmaceutical materials after tableting. J Pharm Sci. 2019;108(3):1246–53.

    Article  CAS  PubMed  Google Scholar 

  47. Wunsch I, Finke JH, John E, Juhnke M, Kwade A. A mathematical approach to consider solid compressibility in the compression of pharmaceutical powders. Pharmaceutics. 2019;11(3):121.

    Article  PubMed Central  Google Scholar 

  48. Sun CC, Hou H, Gao P, Ma C, Medina C, Alvarez FJ. Development of a high drug load tablet formulation based on assessment of powder manufacturability: moving towards quality by design. J Pharm Sci. 2009;98(1):239–47.

    Article  CAS  PubMed  Google Scholar 

  49. Heng WL, Su ML, Cheng H, Shen PY, Liang SJ, Zhang LH, et al. Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride. Mol Pharm. 2020;17(1):84–97.

    Article  CAS  PubMed  Google Scholar 

  50. Nehm SJ, Rodriguez-Spong B, Rodriguez-Hornedo N. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst Growth Des. 2006;6(2):592–600.

    Article  CAS  Google Scholar 

  51. Higuchi TA, Connors KA. Phase solubility techniques. In: Reilly C, editor. Advances in analytical chemistry and Intrumentation. New York: Wiley Interscience; 1965. p. 117–212.

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (81873012, 82074029, 82104401), “Double First-Class” University Plan (CPU2018GY11, CPU2018GY27, 3342100010, 2632021ZD15), Natural Science Foundation of Jiangsu Province (SBK2020042291), China Postdoctoral Science Foundation (2020M671665, 2021M693517), Postdoctoral Research Grant of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

Xiaoshuang He: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content.

Yuanfeng Wei: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content.

Shiru Wang: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work.

Jianjun Zhang: Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published.

Yuan Gao: Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published.

Shuai Qian: Final approval of the version to be published; Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Zunting Pang: Final approval of the version to be published; Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Weili Heng: Final approval of the version to be published; Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding authors

Correspondence to Shuai Qian, Zunting Pang or Weili Heng.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 832 kb)

ESM 2

(CIF 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Wei, Y., Wang, S. et al. Improved Pharmaceutical Properties of Honokiol via Salification with Meglumine: an Exception to Oft-quoted ∆pKa Rule. Pharm Res 39, 2263–2276 (2022). https://doi.org/10.1007/s11095-022-03335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03335-6

Keywords

Navigation