Skip to main content
Log in

Lipocalin-Type Prostaglandin D2 Synthase Protein- A Central Player in Metabolism

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Lipocalin-type prostaglandin D synthase was previously known as β-trace protein (BTP), a low-molecular-weight glycoprotein that is heavily expressed in human cerebrospinal fluid. Nevertheless, it is also seen to be expressed in numerous other tissues including the kidney, liver, lung, heart, adipose, muscle, and pancreas. Functionally, L-PGDS behaves like a lipocalin type protein where it helps in binding and transportation of small lipophilic substances, such as steroids, retinoids, and other lipophilic ligands. Enzymatically, L-PGDS functions as a prostaglandin synthase where it helps in the production of PGD2 by catalyzing the isomerization of PGH2, a common precursor of the two series of prostaglandins. PGD2 regulates its physiological function through two individual receptors named DP1 and DP2. L-PGDS has been a central player in many diseases, its role in metabolism including diabetes, fatty liver disease, and obesity has gathered a large attention. In this review, we summarize the current state of knowledge about L-PGDS and it’s signaling in adipose, hepatic, skeletal muscle, and pancreas tissues, which are core targets for metabolic studies. Modulation of L-PGDS signaling can be considered as a potential future therapeutic target for the treatment of insulin resistance as well as fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pinzar E, Kanaoka Y, Inui T, Eguchi N, Urade Y, Hayaishi O. Prostaglandin D synthase gene is involved in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci. 2000;97(9):4903–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Romanovsky AA, Garami A. Prostaglandin riddles in energy metabolism: E is for excess, D is for depletion. Focus on "Food deprivation alters thermoregulatory responses to lipopolysaccharide by enhancing cryogenic inflammatory signaling via prostaglandin D2". Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1509–11.

  3. Arima M, Fukuda T. Prostaglandin D2 and T(H)2 inflammation in the pathogenesis of bronchial asthma. Korean J Intern Med. 2011;26(1):8–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shiki Y, Shimoya K, Tokugawa Y, Kimura T, Koyama M, Azuma C, et al. Changes of lipocalin-type prostaglandin D synthase level during pregnancy. J Obstet Gynaecol Res. 2004;30(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  5. Urade Y, Fujimoto N, Hayaishi O. Purification and characterization of rat brain prostaglandin D synthetase. J Biol Chem. 1985;260(23):12410–5.

    Article  CAS  PubMed  Google Scholar 

  6. Irikura D, Aritake K, Nagata N, Maruyama T, Shimamoto S, Urade Y. Biochemical, Functional, and Pharmacological Characterization of AT-56, an Orally Active and Selective Inhibitor of Lipocalin-type Prostaglandin D Synthase. J Biol Chem. 2009;284(12):7623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmad AS, Ottallah H, Maciel CB, Strickland M, Doré S. Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep. 2019;42(6):zsz073.

  8. Kumar S, Lau R, Hall C, Palaia T, Brathwaite CE, Ragolia L. Bile acid elevation after Roux-en-Y gastric bypass is associated with cardio-protective effect in Zucker Diabetic Fatty rats. Int J Surg. 2015;24:70–4.

    Article  PubMed  Google Scholar 

  9. Malki S, Nef S, Notarnicola C, Thevenet L, Gasca S, Méjean C, et al. Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. EMBO J. 2005;24(10):1798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193(2):255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giles H, Leff P, Bolofo ML, Kelly MG, Robertson AD. The classification of prostaglandin DP-receptors in platelets and vasculature using BW A868C, a novel, selective and potent competitive antagonist. Br J Pharmacol. 1989;96(2):291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Binda C, Génier S, Cartier A, Larrivée J-F, Stankova J, Young JC, et al. A G protein–coupled receptor and the intracellular synthase of its agonist functionally cooperate. J Cell Biol. 2014;204(3):377–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roskoski R. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 2012;66(2):105–43.

    Article  CAS  PubMed  Google Scholar 

  14. Shimamoto S, Yoshida T, Inui T, Gohda K, Kobayashi Y, Fujimori K, et al. NMR Solution Structure of Lipocalin-type Prostaglandin D Synthase. J Biol Chem. 2007;282(43):31373–9.

    Article  CAS  PubMed  Google Scholar 

  15. Virtue S, Masoodi M, Velagapudi V, Tan CY, Dale M, Suorti T, et al. Lipocalin Prostaglandin D Synthase and PPARγ2 Coordinate to Regulate Carbohydrate and Lipid Metabolism In Vivo. PLoS ONE. 2012;7(7): e39512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujimori K, Aritake K, Oishi Y, Nagata N, Maehara T, Lazarus M, et al. L-PGDS-produced PGD2 in premature, but not in mature, adipocytes increases obesity and insulin resistance. Sci Rep. 2019;9(1):1931.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mu W, Cheng X-f, Liu Y, Lv Q-z, Liu G-l, Zhang J-g, et al. Potential Nexus of Non-alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Insulin Resistance Between Hepatic and Peripheral Tissues. Front Pharmacol. 2019;9:1566.

  18. Paschos P, Paletas K. Non alcoholic fatty liver disease two-hit process: multifactorial character of the second hit. Hippokratia. 2009;13(2):128.

    PubMed Central  Google Scholar 

  19. Kumar S, Palaia T, Hall C, Lee J, Stevenson M, Ragolia L. Lipocalin-Type Prostaglandin D2 Synthase (L-PGDS) Knockout Mice Exhibits Hepatosteatosis Mediated by Enhanced Cd36 Hepatic Expression as a Result of Hyperinsulinemia. Diabetes. 2018;67(Supplement_1):39-LB.

  20. Yanai H, Yoshida H. Beneficial Effects of Adiponectin on Glucose and Lipid Metabolism and Atherosclerotic Progression: Mechanisms and Perspectives. IJMS. 2019;20(5):1190.

    Article  CAS  PubMed Central  Google Scholar 

  21. Fayyaz S, Japtok L, Kleuser B. Divergent Role of Sphingosine 1-Phosphate on Insulin Resistance. Cell Physiol Biochem. 2014;34(1):134–47.

    Article  CAS  PubMed  Google Scholar 

  22. Tao C, Sifuentes A, Holland WL. Regulation of glucose and lipid homeostasis by adiponectin: Effects on hepatocytes, pancreatic β cells and adipocytes. Best Pract Res Clin Endocrinol Metab. 2014;28(1):43–58.

    Article  CAS  PubMed  Google Scholar 

  23. Korotkova M, Lundberg IE. The skeletal muscle arachidonic acid cascade in health and inflammatory disease. Nat Rev Rheumatol. 2014;10(5):295–303.

    Article  CAS  PubMed  Google Scholar 

  24. Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev. 2016;22:94–109.

    PubMed  PubMed Central  Google Scholar 

  25. Sinha I, Sakthivel D, Varon DE. Systemic Regulators of Skeletal Muscle Regeneration in Obesity. Front Endocrinol. 2017;8.

  26. Ragolia L, Hall CE, Palaia T. Lipocalin-type prostaglandin D2 synthase stimulates glucose transport via enhanced GLUT4 translocation. Prostaglandins Other Lipid Mediat. 2008;87(1–4):34–41.

    Article  CAS  PubMed  Google Scholar 

  27. Ragolia L, Palaia T, Hall CE, Klein J, Büyük A. Diminished lipocalin-type prostaglandin D2 synthase expression in human lung tumors. Lung Cancer. 2010;70(1):103–9.

    Article  PubMed  Google Scholar 

  28. You B, Jin C, Zhang J, Xu M, Xu W, Sun Z, et al. MSC-Derived Extracellular Vesicle-Delivered L-PGDS Inhibit Gastric Cancer Progression by Suppressing Cancer Cell Stemness and STAT3 Phosphorylation. Stem Cells International. 2022;2022:1–12.

    Article  Google Scholar 

  29. Virtue S, Feldmann H, Christian M, Tan CY, Masoodi M, Dale M, et al. A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization. Diabetes. 2012;61(12):3139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eguchi Y, Eguchi N, Oda H, Seiki K, Kijima Y, Matsu-ura Y, et al. Expression of lipocalin-type prostaglandin D synthase ( -trace) in human heart and its accumulation in the coronary circulation of angina patients. Proc Natl Acad Sci. 1997;94(26):14689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joo M, Kwon M, Sadikot RT, Kingsley PJ, Marnett LJ, Blackwell TS, et al. Induction and Function of Lipocalin Prostaglandin D Synthase in Host Immunity. J Immunol. 2007;179(4):2565–75.

    Article  CAS  PubMed  Google Scholar 

  32. Zayed N, Li X, Chabane N, Benderdour M, Martel-Pelletier J, Pelletier J-P, et al. Increased expression of lipocalin-type prostaglandin D2 synthase in osteoarthritic cartilage. Arthritis Res Ther. 2009;10(6):R146.

    Article  Google Scholar 

  33. Ouhaddi Y, Najar M, Paré F, Lussier B, Urade Y, Benderdour M, et al. L-PGDS deficiency accelerated the development of naturally occurring age-related osteoarthritis. Aging. 2020;12(24):24778–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ouhaddi Y, Najar M, Pare F, Lussier B, Benderdour M, Pelletier JP, et al. L-PGDS deletion accelerates the development of aging-associated osteoarthritis. Osteoarthritis Cartilage. 2021;29:S95.

    Article  Google Scholar 

  35. Ogobuiro I, Tuma F. Physiology, Renal: StatPearls Publishing; 2021 2021/07/26/.

  36. Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. CJASN. 2017;12(12):2032–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshikawa R, Wada J, Seiki K, Matsuoka T, Miyamoto S, Takahashi K, et al. Urinary PGDS levels are associated with vascular injury in type 2 diabetes patients. Diabetes Res Clin Pract. 2007;76(3):358–67.

    Article  CAS  PubMed  Google Scholar 

  38. Uehara Y, Makino H, Seiki K, Urade Y, on behalf of LPCRGoK. Urinary excretions of lipocalin-type prostaglandin D synthase predict renal injury in type-2 diabetes: a cross-sectional and prospective multicentre study. Nephrology Dialysis Transplantation. 2008;24(2):475–82.

  39. Sagawa Y, Sato M, Sakai N, Chikahisa S, Chiba S, Maruyama T, et al. Wake-promoting effects of ONO-4127Na, a prostaglandin DP1 receptor antagonist, in hypocretin/orexin deficient narcoleptic mice. Neuropharmacology. 2016;110(Pt A):268–76.

    Article  CAS  PubMed  Google Scholar 

  40. Urade Y. Prostaglandin D2 and adenosine as endogenous somnogens. Sleep Biol Rhythms. 2011;9(1):10–7.

    Article  Google Scholar 

  41. Urade Y, Hayaishi O. Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev. 2011;15(6):411–8.

    Article  PubMed  Google Scholar 

  42. Kumar S, Palaia T, Hall CE, Ragolia L. Role of Lipocalin-type prostaglandin D2 synthase (L-PGDS) and its metabolite, prostaglandin D2, in preterm birth. Prostaglandins Other Lipid Mediat. 2015;118–119:28–33.

    Article  PubMed  Google Scholar 

  43. Giles ED, Steig AJ, Jackman MR, Higgins JA, Johnson GC, Lindstrom RC, et al. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss. Front Physiol. 2016;7:32.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A, et al. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab. 2009;94(11):4619–23.

    Article  CAS  PubMed  Google Scholar 

  45. Roszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm. 2015;2015: 816460.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chowdhury AA, Hossain MS, Rahman MS, Nishimura K, Jisaka M, Nagaya T, et al. Sustained expression of lipocalin-type prostaglandin D synthase in the antisense direction positively regulates adipogenesis in cloned cultured preadipocytes. Biochem Biophys Res Commun. 2011;411(2):287–92.

    Article  CAS  PubMed  Google Scholar 

  47. Urbanet R, Nguyen Dinh Cat A, Feraco A, Venteclef N, El Mogrhabi S, Sierra-Ramos C, et al. Adipocyte Mineralocorticoid Receptor Activation Leads to Metabolic Syndrome and Induction of Prostaglandin D2 Synthase. Hypertension. 2015;66(1):149–57.

  48. Wakai E, Aritake K, Urade Y, Fujimori K. Prostaglandin D 2 enhances lipid accumulation through suppression of lipolysis via DP2 (CRTH2) receptors in adipocytes. Biochem Biophys Res Commun. 2017;490(2):393–9.

    Article  CAS  PubMed  Google Scholar 

  49. Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D2 Synthase as a Multifunctional Lipocalin. Front Physiol. 2021;12: 718002.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Leonardini A, Laviola L, Perrini S, Natalicchio A, Giorgino F. Cross-Talk between PPAR γ and Insulin Signaling and Modulation of Insulin Sensitivity. PPAR Res. 2009;2009:1–12.

    Article  Google Scholar 

  51. Vargas E, Podder V, Carrillo Sepulveda MA. Physiology, Glucose Transporter Type 4. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.

  52. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(5):367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tyagi S, Sharma S, Gupta P, Saini A, Kaushal C. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Tech Res. 2011;2(4):236.

    Article  CAS  Google Scholar 

  54. Qiang L, Wang H, Farmer SR. Adiponectin Secretion Is Regulated by SIRT1 and the Endoplasmic Reticulum Oxidoreductase Ero1-Lα. Mol Cell Biol. 2007;27(13):4698–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Achari A, Jain S. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. IJMS. 2017;18(6):1321.

    Article  PubMed Central  Google Scholar 

  56. Lee WH, Kim SG. AMPK-Dependent Metabolic Regulation by PPAR Agonists. PPAR Res. 2010;2010:1–10.

    Article  Google Scholar 

  57. Fujimori K. Prostaglandins as PPAR γ Modulators in Adipogenesis. PPAR Res. 2012;2012:1–8.

    Article  Google Scholar 

  58. Alves‐Bezerra M, Cohen DE. Triglyceride Metabolism in the Liver. In: Terjung R, editor. Comprehensive Physiology. 1 ed: Wiley; 2017. p. 1–22.

  59. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Santoleri D, Titchenell PM. Resolving the Paradox of Hepatic Insulin Resistance. Cell Mol Gastroenterol Hepatol. 2019;7(2):447–56.

    Article  PubMed  Google Scholar 

  61. Kumar S, Srivastava A, Palaia T, Hall C, Lee J, Stevenson M, et al. Lipocalin-type prostaglandin D2 synthase deletion induces dyslipidemia and non-alcoholic fatty liver disease. Prostaglandins Other Lipid Mediat. 2020;149: 106429.

    Article  CAS  PubMed  Google Scholar 

  62. Kumar S, Srivastava A, Palaia T, Hall C, Lee J, Stevenson M, et al. Lipocalin-type prostaglandin D2 synthase deletion induces dyslipidemia and non-alcoholic fatty liver disease. Prostaglandins Other Lipid Mediat. 2020;149: 106429.

    Article  CAS  PubMed  Google Scholar 

  63. Santoleri D, Titchenell PM. Resolving the Paradox of Hepatic Insulin Resistance. Cell Mol Gastroenterol Hepatol. 2019;7(2):447–56.

    Article  PubMed  Google Scholar 

  64. Alves B, Bacci M, Cavallari M, Rozier-Alves R, Fonseca F. The impact of lipocalin-type-prostaglandin-D-synthase as a predictor of kidney disease in patients with type 2 diabetes. DDDT. 2015:3179.

  65. Srivastava A, Palaia T, Hall C, Stevenson M, Lee J, Ragolia L. Lipocalin-type Prostaglandin D2 Synthase appears to function as a Novel Adipokine Preventing Adipose Dysfunction in response to a High Fat Diet. Prostaglandins Other Lipid Mediat. 2021;157: 106585.

    Article  CAS  PubMed  Google Scholar 

  66. Quinkler M, Bujalska IJ, Tomlinson JW, Smith DM, Stewart PM. Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis. Gene. 2006;380(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  67. El Sayed SA, Mukherjee S. Physiology, Pancreas. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.

  68. Cnop M, Welsh N, Jonas J-C, Jörns A, Lenzen S, Eizirik DL. Mechanisms of Pancreatic β-Cell Death in Type 1 and Type 2 Diabetes. Diabetes. 2005;54(suppl_2):S97-S107.

  69. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37.

    Article  Google Scholar 

  70. Deepa SS, Dong LQ. APPL1: role in adiponectin signaling and beyond. American Journal of Physiology-Endocrinology and Metabolism. 2009;296(1):E22–36.

    Article  CAS  PubMed  Google Scholar 

  71. Rose AJ, Richter EA. Skeletal Muscle Glucose Uptake During Exercise: How is it Regulated? Physiology. 2005;20(4):260–70.

    Article  CAS  PubMed  Google Scholar 

  72. Stump CS, Henriksen EJ, Wei Y, Sowers JR. The metabolic syndrome: Role of skeletal muscle metabolism. Ann Med. 2006;38(6):389–402.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank BioRender for providing a great platform to create beautiful schematic diagrams for scientific publications.

Funding

This work is supported by summer support of research grant and Seed grant by St. John’s University.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms being the sole contributor of this work and has approved it for publication.

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Conflict of interest

All of the authors agree with the content of the manuscript and declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Khairnar, R., Fleishman, J. et al. Lipocalin-Type Prostaglandin D2 Synthase Protein- A Central Player in Metabolism. Pharm Res 39, 2951–2963 (2022). https://doi.org/10.1007/s11095-022-03329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03329-4

Keywords

Navigation