Skip to main content

Advertisement

Log in

Recent Developments on Ionic Liquids and Deep Eutectic Solvents for Drug Delivery Applications

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The field of Ionic liquids (ILs) and deep eutectic solvents (DESs) is continuously expanding due to their exceptional unique properties and highly tunable nature, which finds applications in broad areas of modern science. Considering numerous possible IL and DES combinations prepared with active pharmaceutical ingredients (APIs), they find applications in pharmaceutical sciences. They can also serve as potential components of drug formulations and hence they have drawn the attention of formulation scientists. Herein, the concept of pharmaceutical ILs and DESs are discussed briefly. The possible applications of these solvent systems for slow drug delivery including nanoscale drug delivery are discussed citing various examples from the published literature. Although the ILs and DESs are found to be suitable for various drug delivery applications but still none of the slow drug delivery vehicles based on these solvents is in practical use. The data relating to long-term toxicity upon administration in the human body followed by various safety evaluations, clinical trials, etc. are pending for such new drug delivery systems. However, proof of concept studies done on the retention of biological activities in the ionic form is quite encouraging and such studies indicate the possibility of application of such new systems in the development of biomedical research and related industries in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191–200. https://doi.org/10.1038/nrd3681.

    Article  CAS  PubMed  Google Scholar 

  2. Shamshina JL, Kelley SP, Gurau G, Rogers RD. Chemistry: develop ionic liquid drugs. Nature. 2015;528(7581):188–9. https://doi.org/10.1038/528188a.

    Article  CAS  PubMed  Google Scholar 

  3. Hussan KS, Thayyil MS, Deshpande SK, Jinitha TV, Rajan VK, Ngai KL. Synthesis and molecular dynamics of double active pharmaceutical ingredient-benzalkonium ibuprofenate. J Mol Liq. 2016;223:1333–9. https://doi.org/10.1016/j.molliq.2016.09.054.

    Article  CAS  Google Scholar 

  4. Sareen S, Mathew G, Joseph L. Improvement in solubility of poor water-soluble drugs by solid dispersion. International Journal of Pharmaceutical Investigation. 2012;2(1):12. https://doi.org/10.4103/2230-973X.96921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santos de Almeida T, Júlio A, Saraiva N, Fernandes AS, Araújo ME, Baby AR, Rosado C, Mota JP. Choline-versus imidazole-based ionic liquids as functional ingredients in topical delivery systems: cytotoxicity, solubility, and skin permeation studies. Drug Dev Ind Pharm. 2017;43(11):1858–65. https://doi.org/10.1080/03639045.2017.1349788.

    Article  CAS  PubMed  Google Scholar 

  6. Shahram E, Shayanfar A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm Dev Technol. 2020;25(7):779–96. https://doi.org/10.1080/03639045.2017.1349788.

    Article  CAS  Google Scholar 

  7. Zhang Q, Vigier KD, Royer S, Jérôme F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41(21):7108–46. https://doi.org/10.1039/C2CS35178A.

    Article  CAS  PubMed  Google Scholar 

  8. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37(1):123–50. https://doi.org/10.1039/B006677J.

    Article  CAS  PubMed  Google Scholar 

  9. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99(8):2071–84. https://doi.org/10.1021/cr980032t.

    Article  CAS  PubMed  Google Scholar 

  10. Fedorov MV, Kornyshev AA. Ionic liquids at electrified interfaces. Chem Rev. 2014;114(5):2978–3036. https://doi.org/10.1021/cr400374x.

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang W, Hachem K, Bokov D, Ansari MJ, Nakhjiri AT. Ionic liquids in pharmaceutical industry: a systematic review on applications and future perspectives. J Mol Liq 2021:118145. https://doi.org/10.1016/j.molliq.2021.118145.

  12. Patel DD, Lee JM. Applications of ionic liquids. Chem Rec. 2012;12(3):329–55. https://doi.org/10.1002/tcr.201100036.

    Article  CAS  PubMed  Google Scholar 

  13. Freemantle M. An introduction to ionic liquids. Royal Society of chemistry. 2010.

  14. Moniruzzaman M, Tahara Y, Tamura M, Kamiya N, Goto M. Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem Commun. 2010;46(9):1452–4. https://doi.org/10.1039/B907462G.

    Article  CAS  Google Scholar 

  15. Kelley SP, Narita A, Holbrey JD, Green KD, Reichert WM, Rogers RD. Understanding the effects of ionicity in salts, solvates, co-crystals, ionic co-crystals, and ionic liquids, rather than nomenclature, is critical to understanding their behavior. Cryst Growth Des. 2013;13(3):965–75. https://doi.org/10.1021/cg4000439.

    Article  CAS  Google Scholar 

  16. Hough WL, Rogers RD. Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull Chem Soc Jpn. 2007;80(12):2262–9. https://doi.org/10.1246/bcsj.80.2262.

    Article  CAS  Google Scholar 

  17. Balk A, Wiest J, Widmer T, Galli B, Holzgrabe U, Meinel L. Transformation of acidic poorly water soluble drugs into ionic liquids. Eur J Pharm Biopharm. 2015;(94):73–82. https://doi.org/10.1016/j.ejpb.2015.04.034.

  18. Huang W, Wu X, Qi J, Zhu Q, Wu W, Lu Y, Chen Z. Ionic liquids: green and tailor-made solvents in drug delivery. Drug Discov Today. 2020;25(5):901–8.

    Article  CAS  Google Scholar 

  19. Xu J, Chen Y, Jiang X, Gui Z, Zhang L. Development of hydrophilic drug encapsulation and controlled release using a modified nanoprecipitation method. Processes. 2019;7:331. https://doi.org/10.3390/pr7060331.

    Article  CAS  Google Scholar 

  20. Nakamura R, Tokuda M, Suzuki T, Minami H. Preparation of poly(ionic liquid) hollow particles with switchable permeability. Langmuir. 2016;32(10):2331–7.

    Article  CAS  Google Scholar 

  21. Kuchlyan J, Kundu N, Sarkar N. Ionic liquids in microemulsions: formulation and characterization. Curr Opin Colloid Interface Sci. 2016;25:27–38.

    Article  CAS  Google Scholar 

  22. Shi S, Yin T, Tao X, Shen W. Light induced micelle to vesicle transition in an aqueous solution of a surface active ionic liquid. RSC Adv. 2015;5(92):75806–9.

    Article  CAS  Google Scholar 

  23. Tian T, Qin J, Gao YA, Yu L. Experimental and DFT studies on aggregation behavior of dodecylsulfonate-based surface active ionic liquids in water and ethylammonium nitrate. J Mol Liq. 2016;218:457–64.

    Article  CAS  Google Scholar 

  24. Agatemor C, Ibsen KN, Tanner EE, Mitragotri S. Ionic liquids for addressing unmet needs in healthcare. Bioengineering & Translational Medicine. 2018;3(1):7–25. https://doi.org/10.1002/btm2.10083.

    Article  Google Scholar 

  25. Sharma G, Sequeira RA, Pereira MM, Maity TK, Chudasama NA, Prasad K. Are ionic liquids and deep eutectic solvents the same? : Fundamental investigation from DNA dissolution point of view. J Mol Liq. 2021;328C:115386.

    Article  Google Scholar 

  26. Radošević K, Bubalo CMC, Gaurina Srček VG, Grgas D, Landeka Dragičević TL. Radojčić Redovniković, IR evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf. 2015;112:46–53. https://doi.org/10.1016/j.ecoenv.2014.09.034.

    Article  CAS  PubMed  Google Scholar 

  27. Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114(21):11060–82. https://doi.org/10.1021/cr300162p.

    Article  CAS  PubMed  Google Scholar 

  28. Abbott AP, Ahmed EI, Prasad K, Qader IB, Ryder KS. Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilib. 2017;448:2–8. https://doi.org/10.1016/j.fluid.2017.05.009.

    Article  CAS  Google Scholar 

  29. Flieger J, Flieger M. Ionic liquids toxicity—benefits and threats. Int J Mol Sci. 2020;21(17):6267. https://doi.org/10.3390/ijms21176267.

    Article  CAS  PubMed Central  Google Scholar 

  30. Arednarczyk A, Zgórska A, Grabińska-Sota E. Toxicity of 1-heksyl-3-methylimidazolium chloride according to selected marine and freshwater organisms. Inżynieria Ochr Środowiska. 2011;14:137–43.

    Google Scholar 

  31. Stasiewicz M, Mulkiewicz E, Tomczak-Wandzel R, Kumirska J, Siedlecka EM, Gołębiowski M, Gajdus J, Czerwicka M, Stepnowski P. Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3- hydroxypyridinium chlorides, saccharinates and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf. 2008;71:157–65.

    Article  CAS  Google Scholar 

  32. Garcia MT, Gathergood N, Scammells P. Biodegradable ionic liquids, part II. Effect of the anion and toxicology. Green Chem. 2005;7:9–14.

    Article  CAS  Google Scholar 

  33. Gore R, Gathergood N. "safer and greener catalysts – Design of High Performance, biodegradable and low toxicity ionic liquids" In ionic liquids: new aspects for the future, edited by Jun-ichi Kadokawa. London: IntechOpen; 2013. https://doi.org/10.5772/51879.

    Book  Google Scholar 

  34. Agostinho DAS, Santos F, Esperança JMSS, Duarte ARC, Reis PM. New non-toxic biocompatible dianionic ionic liquids that enhance the solubility of oral drugs from BCS class II. Journal of Ionic Liquids. 2021;1:100003.

    Article  Google Scholar 

  35. Jadhav NR, Bhosale SP, Bhosale SS, Mali SD, Toraskar PB, Kadam TS. Ionic liquids: formulation avenues, drug delivery and therapeutic updates. Journal of Drug Delivery Science and Technology. 2021;65:102694.

    Article  CAS  Google Scholar 

  36. Dias AMA, Cortez AR, Barsan MM, Santos JB, Brett CMA, de Sousa HC. Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustain Chem Eng. 2013;1:1480–92.

    Article  CAS  Google Scholar 

  37. Bhatt J, Sequeira RA, Vohra A, Devkar RV, Maity TK, Prasad K. Ionic liquid-mediated preparation of noncytotoxic Hemocompatible stable DNA− ε-poly-l-lysine Polyplexes: a new sustainable approach for the bulk production of potential nonviral vectors for gene delivery applications. ACS Sustain Chem Eng. 2020;9(1):264–72. https://doi.org/10.1021/acssuschemeng.0c07086.

    Article  CAS  Google Scholar 

  38. Zakrewsky M, Banerjee A, Apte S. Choline and geranate deep eutectic solvent as a broad-spectrum antiseptic agent for preventive and therapeutic applications. Adv Healthc Mater. 2016;5(11):1282–9.

    Article  CAS  Google Scholar 

  39. Zakrewsky M, Lovejoy KS, Kern TL. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci U S A. 2014;111:13313–8.

    Article  CAS  Google Scholar 

  40. Ko J, Mandal A, Dhawan S, Shevachman M, Mitragotri S, Joshi N. Clinical translation of choline and geranic acid deep eutectic solvent. Bioengineering and Translational Medicine. 2021;6:e10191. https://doi.org/10.1002/btm2.10191.

    Article  CAS  PubMed  Google Scholar 

  41. Mukesh C, Upadhyay KK, Devkar RV, Chudasama NA, Raol GG, Prasad K. Preparation of a noncytotoxic Hemocompatible ion gel by self-polymerization of HEMA in a Green deep eutectic solvent. Macromol Chem Phys. 2016;217(17):1899–906. https://doi.org/10.1002/macp.201600122.

    Article  CAS  Google Scholar 

  42. Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013;42(12):5425–38. https://doi.org/10.1039/C3CS35518G.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Malhotra S, Molina M, Haag R. Micro-and nanogels with labile crosslinks–from synthesis to biomedical applications. Chem Soc Rev. 2015;44(7):1948–73. https://doi.org/10.1039/C4CS00341A.

    Article  CAS  PubMed  Google Scholar 

  44. Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev. 2012;64(9):866–84. https://doi.org/10.1016/j.addr.2012.01.020.

    Article  CAS  PubMed  Google Scholar 

  45. Peppas NA, Bures P, Leobandung WS, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46. https://doi.org/10.1016/S0939-6411(00)00090-4.

    Article  CAS  PubMed  Google Scholar 

  46. Vinogradov SV. Nanogels in the race for drug delivery. Nanomedicine. 2010;5(2):165–8. https://doi.org/10.2217/nnm.09.103.

    Article  CAS  PubMed  Google Scholar 

  47. Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS Nano. 2012;6(7):5931–40. https://doi.org/10.1021/nn300727j.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang X, Dai H, Ke CY, Mo X, Torbenson MS, Li Z, Mao HQ. PEG-b-PPA/DNA micelles improve transgene expression in rat liver through intrabiliary infusion. J Control Release. 2007;122(3):297–304. https://doi.org/10.1016/j.jconrel.2007.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Besteman KV, Van Eijk K, Lemay SG. Charge inversion accompanies DNA condensation by multivalent ions. Nat Phys. 2007;3(9):641–4. https://doi.org/10.1038/nphys697.

    Article  CAS  Google Scholar 

  50. Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv. 2017;24(1):539–57. https://doi.org/10.1080/10717544.2016.1276232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maya S, Sarmento B, Nair A, Rejinold NS, Nair SV, Jayakumar R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des. 2013;19(41):7203–18.

    Article  CAS  Google Scholar 

  52. Green O, Grubjesic S, Lee S, Firestone MA. The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev. 2009;49(4):339–60. https://doi.org/10.1080/15583720903291116.

    Article  CAS  Google Scholar 

  53. Chen H, Choi JH, Salas-de la Cruz D, Winey KI, Elabd YA. Polymerized ionic liquids: the effect of random copolymer composition on ion conduction. Macromolecules. 2009;42(13):4809–16. https://doi.org/10.1021/ma900713e.

    Article  CAS  Google Scholar 

  54. Han D, Li X, Cui Y, Yang X, Chen X, Xu L, Peng J, Li J, Zhai M. Polymeric ionic liquid gels composed of hydrophilic and hydrophobic units for high adsorption selectivity of perrhenate. RSC Adv. 2018;8:9311–9.

    Article  CAS  Google Scholar 

  55. Kang TH, Chae H, Ahn Y, Kim D, Lee M, Yi G-R. Free-standing ion-conductive gels based on Polymerizable Imidazolium ionic liquids. Langmuir. 2019;35(50):16624–9.

    Article  CAS  Google Scholar 

  56. Zuo Y, Yu J, Liu X, Cao P, Song P, Wang R, Xiong Y. Poly(ionic liquid)-based nanogels and their reversible photo-mediated association and dissociation. Polym Chem. 2017;8:1146–54.

    Article  CAS  Google Scholar 

  57. Zhang J, Liu J, Zuo Y, Wang R, Xiong Y. Preparation of thermo-responsive poly (ionic liquid) s-based nanogels via one-step cross-linking copolymerization. Molecules. 2015;20(9):17378–92. https://doi.org/10.3390/molecules200917378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weiss-Maurin M, Cordella D, Jérôme C, Taton D, Detrembleur C. Direct one-pot synthesis of poly (ionic liquid) nanogels by cobalt-mediated radical cross-linking copolymerization in organic or aqueous media. Polym Chem. 2016;7(14):2521–30. https://doi.org/10.1039/C6PY00112B.

    Article  CAS  Google Scholar 

  59. Koebe M, Drechsler M, Weber J, Yuan J. Crosslinked poly (ionic liquid) nanoparticles: inner structure, size, and morphology. Macromol Rapid Commun. 2012;33(8):646–51. https://doi.org/10.1002/marc.201100836.

    Article  CAS  PubMed  Google Scholar 

  60. Miao C, Li F, Zuo Y, Wang R, Xiong Y. Novel redox-responsive nanogels based on poly (ionic liquid) s for the triggered loading and release of cargos. RSC Adv. 2016;6(4):3013–9. https://doi.org/10.1039/C5RA21820A.

    Article  CAS  Google Scholar 

  61. Demirci S, Celebioglu A, Aytac Z, Uyar T. pH-responsive nanofibers with controlled drug release properties. Polym Chem. 2014;5(6):2050–6. https://doi.org/10.1039/C3PY01276J.

    Article  CAS  Google Scholar 

  62. Mukesh C, Mondal D, Sharma M, Prasad K. Choline chloride–thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohydr Polym. 2014;15(103):466–71. https://doi.org/10.1016/j.carbpol.2013.12.082.

    Article  CAS  Google Scholar 

  63. Wang, J. and Wang, H. et al. (2014) Aggregation in systems of ionic liquids. In Structures and Interactions of Ionic Liquids (Zhang, S., ed.), pp. 39–77, Springer.

  64. Yang L, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11(10):4985–98. https://doi.org/10.1007/s12274-018-2152-3.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kurnik IS, D'Angelo NA, Mazzola PG, Chorilli M, Kamei DT, Pereira JFB, Vicente AA, Lopes AM. Biomater Sci. 2021;9:2183–96.

    Article  CAS  Google Scholar 

  66. Tourné-Péteilh C, Coasne B, In M, Brevet D, Devoisselle J, Vioux A, Viau L. Surfactant behavior of ionic liquids involving a drug: from molecular interactions to self-assembly. Langmuir. 2014;30(5):1229–38.

    Article  Google Scholar 

  67. Ali MD, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M. Biocompatible ionic liquid-mediated micelles for enhanced transdermal delivery of paclitaxel. ACS Appl Mater Interfaces. 2021;13:19745–55.

    Article  CAS  Google Scholar 

  68. Kontogiannidou E, Meikopoulos T, Gika H, Panteris E, Vizirianakis IS, Müllertz A, Fatouros DG. Pharmaceutics. 2020;12:699. https://doi.org/10.3390/pharmaceutics12080699.

    Article  CAS  PubMed Central  Google Scholar 

  69. Júlio A, Caparica R, Lima SAC, Fernandes AS, Rosado C, Prazeres DMF, Reis S. Tânia Santos de Almeida and Pedro Fonte. Ionic liquid-polymer nanoparticle hybrid systems as new tools to deliver poorly soluble drugs. Nanomaterials. 2019;9:1148.

    Article  Google Scholar 

  70. Lu B, Zhou G, Xiao F, He Q, Zhang J. Stimuli-responsive poly(ionic liquid) nanoparticles for controlled drug delivery. J Mater Chem B. 2020;8:7994–8001.

    Article  CAS  Google Scholar 

  71. Huang W, Fang Z, Zheng X, Qi J, Wu W, Lu Y. Green and controllable fabrication of nanocrystals from ionic liquids. Chin Chem Lett. 2022. https://doi.org/10.1016/j.cclet.2022.01.043.

  72. Fukaya Y, Iizuka Y, Sekikawa K, Ohno H. Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem. 2007;9:1155–7. https://doi.org/10.1039/B706571J.

    Article  CAS  Google Scholar 

  73. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc. 2004;126(29):9142–7. https://doi.org/10.1021/ja048266j.

    Article  CAS  PubMed  Google Scholar 

  74. Tang S, Baker GA, Zhao H. Ether-and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem Soc Rev. 2012;41(10):4030–66. https://doi.org/10.1039/C2CS15362A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wagle DV, Zhao H, Baker GA. Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res. 2014;47(8):2299–308. https://doi.org/10.1021/ar5000488.

    Article  CAS  PubMed  Google Scholar 

  76. Kumar V, Malhotra SV. Antitumor activity of ionic liquids on human tumor cell lines. InIonic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology 2010 (pp. 91–102). American Chemical Society. eISBN: 9780841225480.

  77. Marrucho IM, Branco LC, Rebelo LP. Ionic liquids in pharmaceutical applications, annu. Rev Chem Biomol Eng. 2014;5:527e546.

    Google Scholar 

  78. Viau L, Tourné-Péteilh C, Devoisselle JM, Vioux A. Ionogels as drug delivery system: one-step sol–gel synthesis using imidazolium ibuprofenate ionic liquid. Chem Commun. 2010;46(2):228–30. https://doi.org/10.1039/B913879J.

    Article  CAS  Google Scholar 

  79. Gallagher S, Kavanagh A, Florea L, MacFarlane DR, Fraser KJ, Diamond D. Temperature and pH triggered release characteristics of water/fluorescein from 1-ethyl-3-methylimidazolium ethylsulfate based ionogels. Chem Commun. 2013;49(41):4613–5. https://doi.org/10.1039/C3CC41272E.

    Article  CAS  Google Scholar 

  80. Jouannin C, Tourné-Péteilh C, Darcos V, Sharkawi T, Devoisselle JM, Gaveau P, Dieudonné P, Vioux A, Viau L. Drug delivery systems based on pharmaceutically active ionic liquids and biocompatible poly (lactic acid). J Mater Chem B. 2014;2(20):3133–41. https://doi.org/10.1039/C4TB00264D.

    Article  CAS  PubMed  Google Scholar 

  81. Trewyn BG, Whitman CM, Lin VS. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett. 2004;4(11):2139–43. https://doi.org/10.1021/nl048774r.

    Article  CAS  Google Scholar 

  82. Araújo JM, Florindo C, Pereiro AB, Vieira NS, Matias AA, Duarte CM, Rebelo LP, Marrucho IM. Cholinium-based ionic liquids with pharmaceutically active anions. RSC Adv. 2014;4(53):28126–32. https://doi.org/10.1039/C3RA47615D.

    Article  Google Scholar 

  83. Cojocaru OA, Bica K, Gurau G, Narita A, McCrary PD, Shamshina JL, Barber PS, Rogers RD. Prodrug ionic liquids: functionalizing neutral active pharmaceutical ingredients to take advantage of the ionic liquid form. MedChemComm. 2013;4(3):559–63. https://doi.org/10.1039/C3MD20359J.

    Article  CAS  Google Scholar 

  84. Moniruzzaman M, Kamiya N, Goto M. Ionic liquid based microemulsion with pharmaceutically accepted components: formulation and potential applications. J Colloid Interface Sci. 2010;352(1):136–42. https://doi.org/10.1016/j.jcis.2010.08.035.

    Article  CAS  PubMed  Google Scholar 

  85. Aroso IM, Silva JC, Mano F, Ferreira AS, Dionísio M, Sá-Nogueira I, Barreiros S, Reis RL, Paiva A, Duarte AR. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur J Pharm Biopharm. 2016;98:57–66. https://doi.org/10.1016/j.ejpb.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  86. Aroso IM, Craveiro R, Rocha Â, Dionísio M, Barreiros S, Reis RL, Paiva A, Duarte AR. Design of controlled release systems for THEDES—therapeutic deep eutectic solvents, using supercritical fluid technology. Int J Pharm. 2015;492(1–2):73–9. https://doi.org/10.1016/j.ijpharm.2015.06.038.

    Article  CAS  PubMed  Google Scholar 

  87. Tuntarawongsa S, Phaechamud T. Polymeric eutectic drug delivery system. J Metal Mater Miner. 2012;20:22.

    Google Scholar 

  88. Serrano MC, Gutiérrez MC, Jiménez R, Ferrer ML, del Monte F. Synthesis of novel lidocaine-releasing poly (diol-co-citrate) elastomers by using deep eutectic solvents. Chem Commun. 2012;48(4):579–81. https://doi.org/10.1039/C1CC15284J.

    Article  CAS  Google Scholar 

  89. Sánchez-Leija RJ, Pojman JA, Luna-Bárcenas G, Mota-Morales JD. Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. J Mater Chem B. 2014;2(43):7495–501. https://doi.org/10.1039/C4TB01407C.

    Article  CAS  PubMed  Google Scholar 

  90. Mota-Morales JD, Gutiérrez MC, Sanchez IC, Luna-Barcenas G, del Monte F. Frontal polymerizations carried out in deep-eutectic mixtures providing both the monomers and the polymerization medium. Chem Commun. 2011;47(18):5328–30. https://doi.org/10.1039/C1CC10391A.

    Article  CAS  Google Scholar 

  91. Shamshina JL, Barber PS, Rogers RD. Ionic liquids in drug delivery. Expert opinion on drug delivery. 2013;10:1367–81. https://doi.org/10.1517/17425247.2013.808185.

    Article  CAS  PubMed  Google Scholar 

  92. Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JH, Rogers RD. New J Chem. 2007;31:1429–36. https://doi.org/10.1039/B706677P.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The author thanks council of scientific and industrial research (CSIR) New Delhi for financial support. This bears the CSIR-CSMCRI communication No. 18/2022.

Author information

Authors and Affiliations

Authors

Contributions

KP provided substantial contributions to the conception of the review article, writing the draft, revision, corrections, communication etc., IBQ has contributed in terms of literature review and preparation of few tables used in the review article. KP and IBQ agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work.

Corresponding author

Correspondence to Kamalesh Prasad.

Ethics declarations

Conflict of Interest

The authors state no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qader, I.B., Prasad, K. Recent Developments on Ionic Liquids and Deep Eutectic Solvents for Drug Delivery Applications. Pharm Res 39, 2367–2377 (2022). https://doi.org/10.1007/s11095-022-03315-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03315-w

KEY WORDS

Navigation